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Abstract

We examine aggregation in the neoclassical growth model with aggregate shocks and unin-
surable employment risk, as well as related environments. We introduce a Walrasian auctioneer
whose job is to report to households all possible state-contingent future prices. Households take
these as given when forming expectations and making optimal consumption / savings decisions,
and the auctioneer adjusts her forecasts until markets clear. This natural dichotomy between
the households and the auctioneer allows us to study each problem in isolation as well as to
discuss the intersection. On the household side, we separate an explicit expression for the linear
permanent income component of savings from a well-behaved nonlinear adjustment arising from
precautionary behavior and incomplete markets. Equipped with this decomposition, we then
study how economies aggregate in the presence of various auctioneer types that are popular
in the literature. The steady-state auctioneer of Huggett (1997) and Aiyagari (1994) offers a
paper-and-pencil analysis of aggregation that provides a bound on more complex environments.
We provide an economic interpretation of the regression coefficients and explain the lack of time
variation in the auctioneer of Krusell and Smith (1998). We also introduce a new numerical
method which uses the empirical distribution of auctioneer forecasts to substantially improve
solution accuracy in cases where the standard coefficient of determination and other well-known
statistics prove to be misleading.
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1 Introduction

Dynamic models with non-insurable idiosyncratic shocks have become standard in macroeconomics.

Nearly all of the critical results—transmission of idiosyncratic and aggregate shocks, evolution of

the distribution of wealth, welfare, etc.—rely heavily on the extent to which the economy aggre-

gates [Krusell and Smith (2006), Heathcote, Storesletten, and Violante (2009), Guvenen (2011),

Krueger, Mitman, and Perri (2016)]. Despite the importance of aggregation, few papers have

sought to develop the foundations of such properties. Models with rich heterogeneity primarily rely

on quantitative analysis—making the assessment of aggregation difficult [e.g., Kaplan, Moll, and

Violante (2018)]—while tractable models often invoke assumptions which serve to simplify aggrega-

tion [e.g., Bilbiie (2008)]. We study aggregation, and the insights provided therein, in well-known

incomplete markets models that permit substantial heterogeneity.

The challenge associated with studying aggregation in these models is well known. When aggre-

gate shocks are present, the future price of capital depends on the asset holdings and employment

status of each agent. The resultant time-varying distribution of wealth becomes a relevant state

variable. We take a dichotomous approach to this problem by initially introducing a generic Wal-

rasian auctioneer who sets the level of aggregate capital and labor in advance for all time periods

and all outcomes of the shocks. Conditional on the auctioneer’s predictive distribution, households

optimize investment-consumption allocations. Given any such market-clearing predictions by the

auctioneer—and consequently any prevailing wealth distribution—we derive a unique expression

(Proposition 1) for the savings function which separates the linear, permanent income component

from the nonlinear adjustment arising from incomplete markets and precautionary savings. The

auctioneer allows us to assess aggregation even with substantial heterogeneity in agent types and

time-varying wealth levels.

Our analysis of aggregation begins with deterministic, two-period economies, Section 3.1. In

this setting, we derive conditions under which the combination of incomplete markets and wealth

heterogeneity leads to a departure of aggregation even when the wage is deterministic. Propo-

sition 2 delivers a necessary and sufficient condition for the failure of aggregation. Specifically,

aggregation fails if a positive measure of households would like to borrow against future labor earn-

ings but are unable to do so due to incomplete markets. Constrained agents can even be “wealthy”

in an intertemporal sense (high future earnings), but the market for future earnings is illiquid.

Thus, neither incomplete markets nor a skewed wealth distribution alone are sufficient for breaking

aggregation.

Our theorems of aggregation (Theorem 1 and Theorem 2) show that adding uncertainty intro-

duces a nonlinear component to the savings function that is well-behaved with respect to household

wealth: strictly decreasing, strictly convex, non-negative, with asymptotes that approach zero as

household resources increase without bound. Our contribution lies in proving these conditions,

which we then exploit to understand aggregation properties. The linear-nonlinear decomposition

of the household savings function is preserved but the coefficients governing the rate at which house-

holds save change as the horizon lengthens. This, in turn, alters the location of the distribution of
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wealth, which plays a key role in aggregation. Section 3 concludes with an extension to nominal

assets, demonstrating that our approach can be applied to a broader set of models.

Our aggregation theorems are built on a generic treatment of auctioneer and therefore do not

rely on any type of simplification. However in order to fully specify an equilibrium, a particular

auctioneer is necessary. Section 4 provides an interpretation of the auctioneer as an integral part

of numerical algorithms designed to solve dynamic models with heterogeneity. In that setting,

the auctioneer breaks the curse of dimensionality by positing a specific aggregate law of motion.

Section 4 studies the most popular (numerical) auctioneers and offers the following novel insights:

Section 4.1 shows how to derive an efficient paper-and-pencil analysis of aggregation based

on steady-state values that provides a bound on more complex environments. The bound takes

advantage of the fact that the steady state capital stock with idiosyncratic uncertainty is strictly

larger than the representative-agent (RA) steady state, the primary result of Huggett (1997).

Evaluating aggregate wealth at the RA steady-state, we ask the following question: At what point

in the RA wealth distribution will households become constrained (would like to borrow against

future labor income)? Alternatively, how far in the left-tail is the borrowing constraint binding for

households in our economy? We show that this is a trivial calculation and is accurate when the

solution is sought in the space of stationary distributions around a steady state.

Section 4.2 studies the popular auctioneer of Krusell and Smith (1998), Castaneda, Dı́az-

Giménez, and Rı́os-Rull (1998), and den Haan (1993) and provides an economic interpretation

of the now well-known regression analysis. The intuition of our results date back at least to the

optimal portfolio literature of Merton (1969) and Samuelson (1969). With log utility and i.i.d.

returns, the optimal portfolio, expressed as a percentage of wealth, is independent of the level of

wealth. Technology shocks merely alter the level of wealth in the economy, implying the optimal

share of investment is constant and the coefficient of determination (R2) is identically one under

certain assumptions. Thus, we are able to identify regression coefficients and explain the lack of

time variation in the aggregate law of motion of capital. We argue that these results do not tie

directly to aggregation.

Section 4.3 offers an alternative to the commonly-used metrics of equilibrium determination

(e.g., R2, den Haan (2010)) that exploits the theorems of Section 3 and the dichotomous nature

of the problem to produce an arbitrarily precise evaluation of the auctioneer through the market

clearing mechanism. First, we demonstrate how the popular metrics like coefficient of determination

and those of den Haan (2010) can deliver misleading assessments of equilibrium. One particular

counterexample, Example 1, shows that low values for the coefficient of determination do not

always imply inaccurate laws of motion. Second, we propose an evaluation step that replaces

model-dependent statistics—like the R2—with an iterative procedure for the auctioneer. Therefore,

convergence criteria can be applied to the auctioneer’s problem in much the same way that it is

applied to the household’s problem. This is an improvement over contemporary metrics because it

does not rely on subjective cutoff points. We test this approach in an economy in which aggregation

is not the base case.
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1.1 Connection to the Literature The incomplete-market, heterogeneous-agent model is

a workhorse in macroeconomics and we view our household-auctioneer approach as a potential

organizing principle. As a specific example, Section 3.4 shows how adding a nominal friction

(say, through an intermediate goods sector) does not alter the typical household’s consumption /

saving decision in a fundamental way, and therefore our insights can be applied to the increasingly

important Heterogeneous Agent New Keynesian (HANK) literature [Gornemann, Kuester, and

Nakajima (2016), McKay, Nakamura, and Steinsson (2016), Auclert (2019), Kaplan, Moll, and

Violante (2018)]. One can then show, through our theorems and decompositions, the connection

between the quantitative models of heterogeneity and the alternatives that feature a limited number

of agent types [Debortoli and Gaĺı (2018), Bilbiie (2018), Ravn and Sterk (2020), Acharya and Dogra

(2020)], as the extent to which an economy aggregates is an obvious way to address questions of

comparisons between these models. While Section 3.4 derives the extension to nominal assets, we

mainly focus on the seminal Real Business Cycle (RBC) model of Krusell and Smith (1998).

Much of applicable theory on aggregation with incomplete markets dates back several decades

and while the results remain useful, they are typically limiting cases of modern models [e.g., Yaari

(1976), Constantinides (1982)].1 However, much of our analysis of the household has precedence in

the literature. Given that the savings function is the mirror image of consumption, our treatment

of the household dates back at least to the literature examining the permanent income hypothesis

[Friedman (1957)]. Deaton (1991) and Carroll (1992) are important partial equilibrium treatments

of savings under liquidity constraints. Concavity of the consumption function with respect to

wealth under uncertainty was established numerically by Zeldes (1989) and put on firm theoretical

foundation by Carroll and Kimball (1996).

More recently Straub (2018) shows that in many common macroeconomic models with pre-

cautionary savings motives [Aiyagari (1994), Carroll (1997), Gourinchas and Parker (2002)] have

consumption functions that are linear in permanent income, which is consistent with the linear

component of our savings functions in Theorem 1 and Theorem 2. Carroll (2014) derives a similar

limiting condition to the perfect foresight solution as a function of wealth. Bilbiie (2021) employs

an assumption of risk-pooling within subfamilies (after idiosyncratic uncertainty is resolved) and

assumes family heads that can only partially insure between subfamilies, following Lucas (1990).

This serves to facilitate aggregation while preserving some important heterogeneity-related chan-

nels. Similarly, Acharya and Dogra (2020) and Ravn and Sterk (2020) make assumptions that

mitigate the richness of household heterogeneity along certain dimensions. Specifically, Ravn and

Sterk (2020) limit the actions of their three-agent types in order to achieve analytical results with

respect to cyclicality of income risk. Acharya and Dogra (2020) show that CARA utility with

Gaussian shocks permits linear aggregation with a non-degenerate wealth distribution. While

these papers (rightfully) argue that the simplifications which serve to circumvent a potentially

infinite-dimensional state space are justified from an economic analysis standpoint, Theorem 1 and

1A notable exception is Levine and Zame (2002), who derive conditions in which market incompleteness has little
effect on equilibrium allocations, a foretelling result.
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Theorem 2 offer an alternative that maintains the richness of the model.

Our contribution to this theoretical literature is twofold: First, we examine the household

savings function in general equilibrium through the market-clearing actions of the auctioneer and

derive aggregation conditions endogenously.2 One interpretation of the recent literature through

the lens of our paper is that invoked assumptions relegate aggregation to exogenously determined

parameters. Disaggregation in Bilbiie (2008) posits an exogenous fraction of agents who are hand-

to-mouth with key results depending on this fraction; here we look at what determines whether

agents will endogenously end up constrained in this manner. Likewise Ravn and Sterk (2020) make

simplifying assumptions to place all agents on the constraint, with employed workers sitting right

at the point where it becomes binding. Our contribution considers how agents would endogenously

end up at this point, with upside income risk being key.

Second, we derive novel properties of the nonlinear component (i.e., non-negative, convex, de-

creasing in wealth, asymptotes) of the household’s savings function that are critical for assessing

aggregation. Without these asympototic results, we would not be able to bound the savings func-

tion under uncertainty, which affords us a clean definition of “approximate aggregation.” For a

given level of wealth, we can easily calculate the fraction of households that would be constrained

and relate this to the nonlinear component. This intuition drives our results in Section 4.1, where

we employ our theory to evaluate well-known algorithms and propose extensions thereof.

One of our primary messages—that incomplete markets alone are not sufficient to break ag-

gregation, nor is a skewed distribution of wealth—is not without precedent (in some form) in the

literature. For example, Bilbiie (2008) shows that substantial wealth heterogeneity is insufficient

to break aggregation, especially when incomes are proportional. Werning (2015) also demonstrates

that partial equilibrium analysis is insufficient for assessing aggregation. Despite the fact that

we have derived a clean condition for aggregation from the households’ perspective, without the

auctioneer’s values for the interest rate and wage process, our conditions would be indeterminant.

The first generation of models with incomplete-markets (and many contemporary treatments)

feature agents who can adequately self-insure with a limited number of assets. While this result has

largely been explored numerically, it is robust and first appeared in the asset pricing literature.3

These papers foreshadowed the “approximate aggregation” results of the heterogeneous agent,

macro literature pioneered by Krusell and Smith (1998), whose algorithm seemingly depends on

the result. Quoting Krusell and Smith (2006),

2Although a different setup and execution, the idea of partitioning the problem of the household and auctioneer
dates back at least to Prescott and Mehra (1980). Ljungqvist and Sargent (2004) refer to this as the “Big K
(auctioneer), little k (household) trick.” Lucas (1994) uses a related “auctioneer algorithm” to clear stock and bond
markets in a portfolio problem with heterogeneous investors. Takahashi (2014) is a good example of the importance
of relating the household and auctioneer through market clearing.

3Following the suggestion of Bewley (1982), several papers examined deviations from the representative-agent
framework via incomplete markets in order to explain anomalies such as the Equity Premium Puzzle. The enrichment
of the model along this dimension [e.g., Lucas (1994), Aiyagari and Gertler (1991), Heaton and Lucas (1992), Telmer
(1993)] was deemed “largely illusionary” by Constantinides and Duffie (1996) because “consumers are able to come
close to the complete markets rule of complete risk sharing, even though consumers are allowed to trade in just one
security in a frictionless market.”

4
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Approximate aggregation means that aggregates almost do not depend on anything but

average capital. The implication of approximate aggregation therefore is that individual

decision makers make very small mistakes by ignoring how higher-than-first moments

of the wealth distribution influence future prices. If, in contrast, aggregation fails, such

moments by definition do influence savings, portfolio decisions, and so on, thus affecting

not only the future distribution of wealth, but also average resources available in the

future, and hence also future prices relevant to the agent’s current decisions. Thus,

approximate aggregation allows one to solve the problems of forward-looking agents

with a very small set of state variables. This is the key insight. The specific numerical

procedure we outline here is the natural one, given this insight.

This algorithm has been widely adopted, including in models that depart substantially from

the original KS framework [e.g., Cooley, Marimon, and Quadrini (2004), Zhang (2005), Cooley

and Quadrini (2006), Storesletten, Telmer, and Yaron (2007), Khan and Thomas (2013), Favilukis,

Ludvigson, and Nieuwerburgh (2017)]. Assessing efficacy of the algorithm requires knowledge of

how the economy aggregates. The bounded-rational equilibrium could be quite far from the true

rational expectations equilibrium. However, our results imply that the algorithm is more robust

than the above quote may suggest. Section 4 gives several examples where approximate aggregation

fails and yet the optimal share of aggregate capital allocated remains roughly constant. Thus, the

law of motion and simulation methods proposed by Krusell and Smith (1998), Castaneda, Dı́az-

Giménez, and Rı́os-Rull (1998) and den Haan (1993) will be an accurate representation of the

equilibrium.

Dozens of papers have examined the KS algorithm. The relevant literature is much too volumi-

nous to cite but interested readers are directed to volume 34 of the Journal of Economic Dynamics

and Control [den Haan, Judd, and Juillard (2010)], which is devoted to solving heterogeneous

agents with incomplete markets and aggregate uncertainty. One paper in this volume of particular

relevance is den Haan and Rendahl (2010), who advocate for using aggregation of individual policy

rules as a method for finding the aggregate law of motion. While this approach was shown to be an

effective method for numerically solving a heterogeneous agent model with aggregate uncertainty,

we are advocating for using aggregation properties as an evaluation of accuracy. den Haan and

Rendahl (2010) and nearly all applications of the KS algorithm continue to rely on the coefficient

of determination, other regression statistics, or non-iterative metrics to test for the equilibrium.

Our iterative procedure delivers clear indications of convergence of the KS algorithm as shown in

Section 4.3. The methodology is easy to implement and uses the empirical distribution of auction-

eer forecasts to substantially improve solution accuracy in cases where the standard coefficient of

determination and other well-known statistics prove to be misleading.

2 The Economic Environment

Our results pertain to economic environments that are consistent with the foundational models of

this literature [Huggett (1993), Aiyagari (1994), Krusell and Smith (1998)] and by direct extension,

5
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their successors. In the main text, we focus primarily on the environment of Krusell and Smith

(1998), relegating discussions of generalizations to appendices and footnotes. One notable extension

is that of the Heterogenous / Two Agent New Keyesian (TANK/HANK) literature [e.g., Kaplan,

Moll, and Violante (2018), Bilbiie (2018), Acharya and Dogra (2020)]. In order to make our

connection to this literature more explicit, we include a nominal asset in many of the derivations

below.

2.1 Households Households live for T periods indexed by t = 1, 2, ..., T .4 We will use the

convention that a new period commences with the arrival of new information. Any variable known

or chosen at date t will be indexed by t. Households value consumption according to

U(c1, c2, ..., cT ) = E1

T
∑

t=1

βt−1u(ct) (1)

where 0 < β < 1 is the intertemporal discount factor and period utility takes the constant relative

risk aversion (CRRA) form

u(ct) =







c1−σ
t
1−σ σ > 0, σ 6= 1

log(ct) σ = 1

Household income in each period is composed of proceeds from a single savings asset and an

endowment which is driven by an individual and exogenous stochastic process. Our primary focus

will be on production economies in which savings come in the form of capital and endowments in

the form of time or efficiency units to devote to labor. As such, we denote the level of savings

brought into period t + 1 by kt and the endowment in period t by ℓt ≥ 0.5 Savings depreciate at

rate δ ∈ [0, 1].

Households are price takers. Letting Rt denote the market return on savings net of depreciation

and letting Wt denote the price of a unit of endowment in terms of the consumption good, the

period resource constraint is given by ct + it ≤ Rtkt−1 + Wtℓt, where the left-hand side consists

of consumption and investment expenditures at time t and the terms on the right-hand side are

savings and endowment income, respectively. We use the convention that lower-case variables

are household specific, while upper-case denotes aggregate quantities and prices. An agent’s new

allocation of capital stock kt consists of the fraction of current capital which does not depreciate

in addition to new investment, kt = (1 − δ)kt−1 + it. Combining the previous two equations, we

4T can be arbitrarily large and vary across households. Results are also given for the limiting case, T → ∞.
However, as we note below, control over this parameter will be important for understanding aggregation.

5In the production economy of Krusell and Smith (1998), households are endowed with one unit of time and
inelastically supply ǫℓ̃ units of labor each period, where ǫ is stochastic, taking on the value of unity if employed and
zero if unemployed. Hence, ℓt ≡ ǫtℓ̃t.

6
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directly write the resource constraint in terms of the household’s period t choice of capital holdings,

ct + kt ≤ (1− δ +Rt)kt−1 +Wtℓt (2)

Our formal analysis will rely heavily on the intertemporal Euler equation being a necessary condition

for optimality in the household’s problem. It will therefore facilitate much of the analysis to subject

households to their natural borrowing limits kt ≥ kt, for t = 1, ..., T , in which case the asymptote in

the period utility function for zero consumption prevents this constraint from binding. The natural

borrowing limit equals the infimum of resource holdings for which the household can guarantee

repayment according to its income stream. For example, if the labor endowments are bounded

below by zero and there is a positive probability that all future endowments will be null, then the

natural borrowing limit is a no-borrowing constraint.

2.2 Firms In the context of a production economy, the savings vehicle available to the house-

holds is capital and the endowment comes in the form of labor efficiency units. The income from

these assets comes from renting them out to firms which operate in perfectly competitive factor and

product markets. The aggregate production technology is Cobb-Douglas, Yt = F (Zt,Kt−1, Lt) =

ZtK
α
t−1L

1−α
t , with α ∈ [0, 1]. Aggregate capital and labor are denoted K and L respectively, and

Z is an aggregate productivity shock. Profit maximization delivers the rental rate of capital and

the wage rate as

Rt = αZt

(

Kt−1

Lt

)α−1

(3)

Wt = (1 − α)Zt

(

Kt−1

Lt

)α

(4)

2.3 Uncertainty Let Lt denote the stochastic processes that enter the model. These shocks

can take various forms (e.g., idiosyncratic, aggregate) and can take various correlation structures

(e.g., idiosyncratic shocks can be correlated with aggregate shocks). The theoretical results of

Section 2.5 and our results on aggregation require only that there be a finite number of possible

exogenous outcomes in each future period, which necessitates shocks with discrete sample spaces.

This allows us to write theorems with expectations as finite sums, which we then algebraically

manipulate. While this restriction does rule out commonly used continuous support processes,

for example autoregressive series with normal innovations, it admits finite approximations to such

series commonly used in numerical solutions.

Assumption 1: For each period t = 2, ..., T of a given household’s lifetime, there is a finite set

St ⊂ R
2 such that exogenous shock distributions assign probability one to the event (ℓt, Zt) ∈ St.

2.4 The Auctioneer Households maximize their preferences subject to the above budget con-

straint and borrowing limit, given initial savings k0. To do so, they must have access to sequences

of state contingent prices, Rt and Wt, for their entire lifetime. The equilibrium sequences of prices

7
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3
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Figure 1: Example of auctioneer predictions for T = 3. We assume households know all possible
future realizations of the interest rate (R), and the states (good g, bad b) in which they occur.
Households are endowed with knowledge about the future probabilities of each such state (p).
Subscripts denote time periods and superscripts states of the world.

will clear markets in all future states, and consequently depend upon the evolution of aggregate

capital and labor. These, in turn, depend upon the time-varying, cross-sectional distribution of

individual capital holdings. That this distribution is a relevant state variable and (potentially) a

high-dimensional object is the primary challenge of these models.

To establish our aggregation results in the most generic environment possible, we introduce a

Walrasian auctioneer whose job is to report to the households all possible future prices which could

occur during their lifetimes and the states in which they occur. Formally, we will denote by Ft the

predicted future prices relevant to the consumption / savings decision of an age t household,

Ft = {Rs,W s}
T
s=t+1 (5)

These predictions associate to each future age s a vector (indicated by bold font) of prices, with

one component for each possible history of nature when the household reaches this age, given

the current state at age t. Because households are price takers, they treat these predictions as

given when forming expectations and optimizing. Thus, there is a natural dichotomy between the

auctioneer’s and households’ problems.

To visualize the role of the auctioneer, it is helpful to think of the tree diagram shown in

Figure 1 for the case T = 3 and for two possible aggregate states, good (g) and bad (b). The

auctioneer provides the households with predictions Rj
t for the interest rate at each time in every

possible future. As we will formalize in the next section, households endowed with knowledge of

the corresponding probabilities of each future can then optimize their consumption and savings.

The auctioneer may then aggregate these decisions in each possible future and compare the implied

prices with her predictions to determine whether markets will clear.

Our theorems for the household are built on a generic treatment of these predictive densities

and therefore do not rely on any type of simplification. From the perspective of the household, the

predictive distributions can be arbitrarily large and accurately reflect the true rational expectations

equilibrium. In this respect, our aggregation results are immune from the curse of dimensionality.

8
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Moreover, the generality of our aggregation theorems allows us to study various types of auc-

tioneers that are an integral part of popular numerical algorithms designed to solve models with

heterogeneity.

2.5 Formal Treatment of a Household’s Problem Along with the auctioneer’s predic-

tions, the household is assumed to know the joint distribution of the idiosyncratic and aggregate

exogenous shock processes, Lt = {ℓs,Zs,pℓ,Z,s}
T
s=t+1, consistent with rational expectations. We

can now write the household’s problem formally as follows: Letting xt denote period resources at

time t, xt = (1−δ+Rt)kt−1+Wtℓt, the dynamic programming formulation consists of the sequence

of problems

V (t)(xt,Lt,Ft) = max
ct,kt

(

u(c) + βEtV
(t+1) (xt+1,Lt+1,Ft+1)

)

(6)

subject to ct + kt ≤ xt

xt+1 = (1 − δ +Rt+1)kt +Wt+1ℓt+1

kt ≥ kt

for t = 1, ..., T , with k0, ℓ1, R1 and W1 given, along with the terminal condition V (T+1) ≡ 0.

A solution to this sequence indicates savings functions k(t)(xt,Lt,Ft), t = 1, ..., T , giving a typi-

cal household’s choice of additional asset holdings as a function of current resources and predictions,

and this will be our primary object of focus.6 It will therefore be important that the households’

problems have a unique, well-behaved solution, as our first proposition establishes.

Proposition 1: Household Existence and Uniqueness. There is a unique solution to the household’s

dynamic programming problem (6). The associated savings functions k(t) are increasing (strictly for

t < T ) with respect to xt and satisfy limxt→kt
k(t)(xt,Lt,Ft) = kt, limxt→∞ k(t)(xt,Lt,Ft) = ∞,

for t < T . The corresponding value functions are strictly increasing and strictly concave with

respect to xt and satisfy limxt→kt
V (t)(xt,Lt,Ft) = −∞

Proof. Appendix A.

Our assumptions ensure that the inter-temporal Euler equations are a necessary condition for

optimality. In terms of the asset choice, these conditions read

(xt − kt)
−σ = βEt(1− δ +Rt)(xt+1 − kt+1)

−σ, t = 1, ..., T − 2 (7)

(xT−1 − kT−1)
−σ = βEt(1− δ +RT )x

−σ
T (8)

The theory below relies on algebraic manipulations of these expressions to study aggregation.

The omnipresent nature of the Euler equation implies that our theorems are operational in many

6We use the notation k(t)(xt,Lt,Ft) to denote a function with dependence on the elements xt,Lt,Ft. This
notation is used when referring to the macroscopic properties of the savings function (i.e., across different wealth
levels). In what follows, we often drop the dependence on the predictive distributions Lt,Ft for notational convenience.

9
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environments. While our focus is on the neoclassical growth model with idiosyncratic labor shocks,

our approach can be adapted to several other popular model choices. As we note below and

derive explicitly in the online Appendix, introducing nominal assets does not alter the household’s

problem substantially. All of our theorems continue to go through with relatively minor algebraic

adjustments.

3 Aggregation Theorems

This section builds sequentially to an understanding of nonlinearity in household savings and how

it impacts aggregation. We start from a two-period model, which permits closed-form expressions

of the equilibrium, and demonstrate that the intuition derived therein extends to more complex

environments.

3.1 Two-Periods, No Uncertainty Consider a typical household’s problem with a single

savings decision (T = 2), log utility (σ = 1), and complete depreciation of capital (δ = 1). Further,

suppose there is no uncertainty about labor income or aggregate productivity. Markets are complete

in that there exists a spot market at t = 1 to trade claims on future wages. The auctioneer provides

deterministic values for the aggregate wage (W ) and interest rate (R). The typical household’s

optimal savings function (capital holding, k1) for T = 2 is

k1 =
1

1 + β

(

βx1 −
W2ℓ2
R2

)

(9)

where x1 is defined as household wealth known at the beginning of period 1. Savings that opti-

mally smooths consumption across periods compares wealth today with discounted labor income

tomorrow. If wealth is relatively high, savings will be positive. If wealth is significantly less than

discounted wages, the household will borrow against future labor earnings to bring resources into

the current period.

The aggregation properties of this model are also straightforward. The household’s savings

function is linear in wealth with slope coefficient β/(1 + β), which is the rate of transformation

of wealth. Since all households, regardless of wealth levels, have the same marginal propensity to

save (consume), the economy Gorman (1953, 1961) aggregates. We will refer to savings functions

with this characteristic as linear in wealth. Integrating over all households gives the well-known

representative agent aggregate savings function,

K1 =

(

αβ

1 + αβ

)

X1 (10)

where X1 is economy-wide resources available at t = 1. Note that this value of aggregate capital is

what the auctioneer would provide to households and is independent of the distribution of wealth.

Suppose now that markets are incomplete and households cannot borrow against future labor

income. If we impose an ad-hoc no-borrowing constraint (k1 ≥ 0), the optimal savings function is

10



Chipeniuk, Katz & Walker: Aggregation

piece-wise linear

k1 =







(

β
1+β

)

x1 −
W2ℓ2

(1+β)R2
, if x1 ≥

W2ℓ2
βR2

0, otherwise
(11)

Now households which would borrow under complete markets can no longer intertemporally sub-

stitute. These constrained households behave in a hand-to-mouth fashion, consuming all of the

resource endowment in the first period and labor income in the second. We will refer to the house-

holds which choose a positive level of savings as unconstrained, denoted by “u” and will denote

households whose constraint binds with “c.”

We take as given an initial distribution of household resources, λ1. (Foreshadowing results, one

may think of this distribution of wealth as being determined by a simulated economy close to its

steady state distribution.) If this distribution is such that every household is unconstrained, we

have

x1 ≥
W2ℓ2
βR2

=
(1− α)Y2ℓ2K1

αβY2L2
=

(

1− α

1 + αβ

)

ℓ2
L2

X1

for almost every x1 in the support of λ1. This level of savings is linear in initial resources for

all households and aggregation once again obtains, with aggregate savings being given by (10).

Rearranging slightly, we obtain a necessary condition for the economy to aggregate,

x1
X1

≥

(

1− α

1 + αβ

)

ℓ2
L2

(12)

Namely, (almost) every household must have a share of initial resources which is sufficiently large

relative to its share of the aggregate wage bill. We can use (12) to obtain a necessary condition7

for the failure of aggregation, which we state as a proposition:

Proposition 2: Skewness, Labor Market Outcomes and Aggregation. A necessary condition for

breaking aggregation is for the initial resources to be sufficiently skewed relative to labor market

outcomes:

∫

c

x1
X1

dλ1
∫

u

x1
X1

dλ1
<

∫

c

ℓ2
L2

dλ1

α(1+β)
1−α +

∫

u

ℓ2
L2

dλ1

(13)

Incomplete markets alone are not sufficient to break aggregation, nor is a skewed distribution

of wealth. There must be a positive measure of households that would like to borrow against

7Sufficiency attains if and only if there exists a set of pairs of initial resources and final labor outcomes, c = {(x, ℓ)},
such that λ1(c) > 0 and such that for every (x, ℓ) in the set of constrained allocations, we have

x
∫

u
x1 dλ1

<

ℓ
L2

α(1+β)
1−α

+
∫

u

ℓ2
L
dλ1

11
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Figure 2: Savings Functions in k-x Space. The Linear Savings Function (black line) and the
Incomplete-Markets Savings Function (dotted line) are plotted for various wealth distributions (λ1).
Two distributions of wealth are shown; one that leads to aggregation (solid, blue distribution) and
one that does not (dashed, red distribution).

future labor earnings that are unable to do so. Aggregation would continue to hold if relatively

poor households had bleak labor market prospects. Conversely, aggregation would fail to hold if

relatively wealthy households expected much higher wages in the future. The distribution of wealth

alone does not determine aggregation properties. The denominator on the RHS of (13) shows that

the failure of aggregation requires a more skewed wealth distribution as labor’s share decreases,

patience increases, or the fraction of labor hours supplied by the poor decreases. Moreover, allowing

for partial depreciation of capital (δ ∈ (0, 1)) would facilitate aggregation by increasing the return

to savings, requiring a stronger inequality in (13).

Figure 2 plots the savings functions k1 against initial resources x1 under incomplete markets

(dotted line) and complete markets (solid line). With complete markets, households can fully

insure across states of nature via state-contingent assets. They can borrow up to tomorrow’s

discounted labor earnings (k-intercept of linear savings function) and savings turn negative when

the household’s wealth (x1) falls below tomorrow’s discounted wage, (x intercept). Under linear

savings and for any point on the distribution of wealth, the slope of the savings function is constant

at β/(1 + β). Every households’ marginal propensity to consume is identical. Aggregation holds

independent of the distribution of wealth (λ1).

When we do not allow households to borrow (dotted line), households save the same constant

fraction until wealth falls below the discounted wage. At that point, savings equal zero. The extent

to which the economy aggregates depends upon the relationship between the distribution of wealth

and labor market outcomes. For heuristic purposes, we plot two different distributions in Figure

2 to represent two different economies, acknowledging that the numeric values of the x-intercept

12
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would not be identical across the economies. As shown above, if no households are constrained

λ(c) = 0 (solid, blue distribution), then aggregation holds. If the distribution of wealth falls below

the intercept of the Gorman savings function (dashed, red distribution), then households would

be constrained λ(c) > 0 and the economy will not aggregate. It is the relationship between labor

market outcomes as determined by the piece-wise linear function and the distribution of wealth

that determines aggregation.

As we justify more thoroughly below, this simple model provides the basic intuition for aggre-

gation in dynamic economies. Our next results will show that the entire class of models described

thus far share the feature that adding risk to the economy results in a well-behaved perturbation

to the closed form solution of (9). This perturbation will be seen to reflect household risk aversion

under uncertainty.

3.2 Two-Periods, Uncertainty We now introduce idiosyncratic labor shocks to the two-

period setup described above. We assume households face a “low” labor outcome which we take to

be an unemployment state, ℓlow = 0, with probability p, and a “high” labor outcome, ℓhigh, with

probability 1 − p. Capital must now serve the dual role of the savings vehicle to intertemporally

smooth consumption and as insurance against employment shocks. This, combined with the risk-

averse nature of our households, will result in savings functions which are nonlinear across the

entire feasible set of resources. Hence the savings decisions will not aggregate for non-degenerate

distributions of households across resources. Our results are summarized by the following theorem.

Theorem 1: Two Periods, CRRA Utility. The savings function for the typical household with

wealth level x1 and CRRA utility can be written as

k(1)(x1) =
1

1 +Q1

(

Q1x1 − E

(

W2ℓ2
1− δ +R2

)

+ ǫ(1)(x1)

)

(14)

with Q1 =
[

β(1− δ +R2)
1−σ
]1/σ

where the nonlinear error term is strictly decreasing, strictly convex, non-negative, and satisfies

lim
x1→k1

ǫ(1)(x1) = E

(

W2ℓ2
1− δ +R2

)

+ k1, lim
x1→∞

ǫ(1)(x1) = 0

Proof. See Appendix A.

An obvious corollary of the theorem is the log utility case, σ = 1, which gives the savings

function as

k(1)(x1) =
1

1 + β

(

βx1 − E1

(

W2ℓ2
1− δ +R2

)

+ ǫ(1)(x1)

)

(15)

where the nonlinear error term ǫ(1)(x1) satisfies the properties of Theorem 1.

The first two terms on the right-hand side of the household’s savings equation (14) and (15) are

13
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Figure 3: Savings Functions in k-x Space. The Linear (Gorman) Savings Function (black line)
and the household’s Savings Function (dashed line) are plotted for various wealth levels. Two
initial distributions of wealth are shown; one that leads to approximate aggregation (solid, blue
distribution) and one in which aggregation will not hold (dashed, red distribution).

the same as the deterministic case (9), with the deterministic wage replaced by the expected wage.8

Households once again compare current wealth levels to (expected) labor market outcomes. The fi-

nal term, ǫ(1)(x1), is unique to the uncertainty case, strictly positive and captures the precautionary

savings motive of the household. Thus, the savings function is nonlinear in wealth and aggregation

will not hold in general. The extent to which the economy aggregates depends upon the size of this

last term. We therefore refer to it as the nonlinear component in the otherwise linear (Gorman)

savings rule. If this nonlinear component is small, the economy will “approximately aggregate.” If

it is large, aggregation breaks down.

The nonlinear term has the disadvantage that it is endogenous, with a closed-form expression

that is inaccessible to us. Nonetheless, we can derive properties of this nonlinear component from

what we know about the savings function. For example, differentiating ǫ(1)(x1) and recalling that

k(1) is strictly increasing, we obtain that the nonlinear component is strictly decreasing in resources.

We can also show that it is positive, strictly convex in wealth, and we can calculate its limits as

resources approach the endpoints of the domain. The first limiting case shows that as resources

dwindle, the savings function approaches the natural borrowing limit, k1. If unemployment occurs

with positive possibility and there is no unemployment benefit, this value will be zero. As wealth

increases, the value of the nonlinear component diminishes, and the household will behave as a

linear (Gorman) saver.

8The difference between the utility specifications can be seen in the linear (Gorman) savings function, which has
a slope of Q1/(1 + Q1), that differs from the log case of β/(1 + β) due to income/substitution effects. In addition,
risk aversion plays an important role in the nonlinear component. We examine these elements more closely in the
next section.

14



Chipeniuk, Katz & Walker: Aggregation

Figure 3 adds the nonlinear savings function k(x) (dashed line) to Figure 2. Theorem 1 estab-

lishes that the savings function limits to zero as wealth falls to the natural borrowing limit, and

asymptotes to the linear (Gorman) savings function as wealth increases. The nonlinear component

is, therefore, decreasing in wealth. We plot this figure assuming log utility, but replacing β with Q

as defined in (14) and increasing the size of the nonlinear component delivers the CRRA savings

function.

As in the deterministic case, the relationship between expected labor market outcomes and

the distribution of wealth is critical. If the distribution of wealth lies primarily to the left of the

discounted, expected wage (x-axis intercept), aggregation will not attain. This is depicted by the

dashed, red distribution in Figure 3. If instead, the wealth of most households is substantially

greater than the expected wage (solid, blue distribution), the nonlinear component of the savings

function will be minimal, and the economy will approximately aggregate. The “approximate”

adjective applies because even if the poorer households have significant nonlinear savings behavior,

they hold such little capital that their impact on aggregates is minimal.

Our linear-nonlinear decomposition provides some intuition as to how two-asset models or mod-

els with illiquid assets might change our calculus. As an example, suppose we have a large share of

“wealthy hand to mouth” with illiquid asset holdings. Illiquidity can be interpreted as a missing

market and by imposing borrowing limits, we have enforced a form of illiquidity. When markets are

incomplete, households would like to borrow but cannot. Likewise with illiquid assets, households

cannot transfer these resources directly into consumption-equivalent goods. Our interpretation also

allows for “wealthy hand to mouth” as households with high levels of wealth that are constrained

by incomplete markets and have increasingly improving labor outcomes, would have high marginal

propensities to consume. This scenario would lead to a breakdown of aggregation despite a high-

level of wealth. As we note above, incomplete markets alone are not sufficient to break aggregation,

neither is a skewed distribution of wealth. There must be a positive measure of households that

would like to borrow against future labor earnings that are unable to do so. Illiquidity is one way

to impose this condition.

3.3 T -Periods, Uncertainty We now present the extension of Theorem 1 to the full generality

of the setup. While the theorem shows that the properties derived in the two-period model extend

to the multi-period counterpart for CRRA (and log) utility, the parameter values that influence

aggregation change in important ways.

Theorem 2: Typical Household Savings Function, σ 6= 1. Make the sequence of recursive definitions,

MT = (1 − δ + RT )
1−σ; QT−1 = (βET−1MT )

1/σ; Mt = (1 − δ + Rt)
1−σ(1 + Qt+1)

σ; Qt−1 =

[βEt−1Mt]
1/σ for t = T −2, ..., 1. The savings functions k(t)(xt,Lt,Ft), t = 1, ..., T which solve the

15



Chipeniuk, Katz & Walker: Aggregation

household’s optimization problem can be written in the form

k(t)(xt,Lt,Ft) =
Qt

1 +Qt
xt −

1

1 +Qt
Et

(

T
∑

s=t+1

(

s
∏

r=t+1

Mr

Er−1Mr

)

Wsℓs
∏s

r=t+1(1− δ +Rr)

)

+ ǫ(t)(xt,Lt,Ft) (16)

where the nonlinear error term ǫ(t) is strictly decreasing, strictly convex, non-negative, and satisfies

lim
xt→kt

ǫ(t)(xt) =
1

1 +Qt

[

Et

(

T
∑

s=t+1

(

s
∏

r=t+1

Mr

Er−1Mr

)

Wsℓs
∏s

r=t+1(1− δ +Rr)

)

+ kt

]

and

lim
xt→∞

ǫ(t)(xt) = 0

Proof. Appendix A.

The form of the savings function (16) is identical to the two-period counterpart in that the linear

component compares current wealth xt, discounted at a rate that is constant across all households,

to expected discounted labor earnings. Additionally, the error term satisfies the same properties as

the two-period model (i.e., non-negative, convex, decreasing in wealth, identical bounds given by

asymptotes).

The difference is in the values of the parameters as T increases. Consider the limiting case of

Theorem 2 as T → ∞ with log utility, which we state as a conjecture.9

Conjecture 1: Infinite Horizon, Log Utility. The savings functions k(t)(x,Lt,Ft) which solve the

infinite horizon analogue with log utility can be written in the form

k(t)(xt,Lt,Ft) = βxt − (1− β)Et

(

∞
∑

s=t+1

Wsℓs
∏s

r=t+1(1− δ +Rr)

)

+ ǫ(t)(xt,Lt,Ft) (17)

where the nonlinear error term ǫ(t) is strictly decreasing, strictly convex, non-negative and satisfies

the well-established limits.

The horizon T is a critical parameter in our analysis of aggregation. As the horizon increases,

consumption smoothing necessitates that households save an increasing fraction of their wealth,

9The only substantial difference here is that the household now must be endowed with predictive probabilities
into the infinite future and standard transversality conditions replace zero savings at T . Naturally, for the conjecture
to make sense, the limits which define the sums and products out into the infinite future must be well defined, which
in turn requires that household predictions must be restricted to be well-behaved in an appropriate sense. Putting
aside this difficulty, the strategy for proving this seems evident. If we consider Euler equation iteration to be an
operator on an appropriate function space, our main theorems essentially state that this operator leaves invariant a
particular subspace. If this subspace is closed in some topology in which repeated application of the operator leads
to convergence, then the above conjecture will hold.
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which is well known permanent income behavior. This can be seen by comparing (17) to the two-

period analog (15). The fraction of wealth saved increases substantially from β/(1 + β) in the

two-period model to β as T → ∞. Moreover, the subjective discount applied to both the expected

stream of wages and the nonlinear component approaches (1 − β) as T → ∞. A sufficiently

high discount factor (the typical quarterly calibration ranges from 0.95 to 0.99) places a much

higher weight on savings relative to the expected wage and the nonlinear component of the savings

function, facilitating aggregation. Households continue to compare expected wages to wealth but

the discount applied to wages is significantly lower for substantial T .

As a graphical representation, imagine adding the savings function (17) to Figure 3. As T

increases so does the slope of the linear (Gorman) savings component; the x- and y-intercept

would move closer to the origin, ceteris paribus. The linear savings function for T → ∞ would

lie everywhere to the left of the linear savings function for T = 2. For a fixed distribution of

wealth, the bounds on the savings function imply a smaller nonlinear component as T increases

and aggregation would be much more likely to hold.

3.4 Aggregation with Nominal Assets We now introduce nominal assets (and other con-

siderations consistent with the HANK setup) in order to provide intuition as to how it would alter

aggregation. Consider the following two-period budget constraint,

P1c1 + b1 = I1b0 +W1(1− τ1)z1 + P1d1 + P1T1

P2c2 = I2b1 +W2(1− τ2)z2 + P2d2 + P2T2

where Pt denotes the time t price level, It the time t gross nominal rate, τt a time t labor income

tax rate, dt profits from monopolistic firms, and Tt a lump sum government transfer. As has

been established, aggregation depends upon the linearity of the savings / consumption function.

If profits (dt) and government transfers (Tt) are lump sum, then their impact on aggregation will

be negligible. Moreover, we can embed the uncertainty associated with distorted tax rates directly

into the exogenous shocks, letting z̃t = (1 − τt)zt, with no change to our formulas.10 Our interest

lies in how the price level and nominal interest rate impact our linear-nonlinear decomposition to

which we have the following corollary to Theorem 1 for log utility.11

Corollary 1: Two Periods, Log Utility, Nominal Assets. The savings function for the typical

household with wealth level x1 and log utility can be written as

b1
P1

=

(

β

1 + β

)

x1 −
1

1 + β
E

[

W2

R2
z2

]

+

(

1

1 + β

)

Var(ζ2)
b1
P1

+ W2
R2

zlow + Var(ζ2)
Eζ2

(18)

10Our setup does not allow for elastic labor supply, which is not an innocuous alteration as the Euler equation—
from which we derive the linear-plus-error form—contains wage earnings, hence hours. Hours worked are an implicit
nonlinear function of savings, and therefore introduce additional nonlinearities to this part of the savings function.
However, our asymptote remains intact as these nonlinearities approach zero in the limit of high wealth.

11We only examine log utility and two periods as we have established that the intuition carries over to multiple
periods and CRRA utility with explicit derivations available upon request.
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with b1 ≥ b1 and where Π2 = P2/P1 is inflation, R2 = Π2/I2 is the real rate, W2 is the real wage,

and ζ2 =
Π2W2
I2

(z2 − zlow) denotes real excess wages.

Proof. See Appendix A.

The extent to which nominal assets impact aggregation depends upon the stickiness of wages.

If wages are perfectly flexible, then an increase in inflation will be offset in all of the wage terms

by an increase in the nominal wage, leaving the real wage and the linear component of savings

unaffected. To see this note,

∂(b1/P1)

∂P2
= −

(

1

1 + β

)

Var(ζ2)
(

b1
P1

+ Π2W2
I2

zlow + Var(ζ2)
Eζ2

)2

∂((b1/P1)

∂P2
(19)

which requires ∂((b1/P1)/∂Π2 = 0, so the real value of savings does not respond to the change

in prices/inflation. However, if wages are sticky (a common assumption in the New Keynesian

literature), then an increase in the price level will not be offset by changes in the real wage.

Revisiting Proposition 2, a falling expected real wage will facilitate aggregation in the sense that

households would like to borrow less today due to deteriorating labor prospects. However, inflation

uncertainty increases the precautionary savings motives, especially as the variance of inflation and

spread of the distribution increases. The extent to these second-moment concerns outpace the first-

moments of inflation obviously depends upon the stochastic process for inflation. For example, as

US inflation data has become less volatile over the last two decades, the precautionary savings

motives attributable to inflation have most likely become negligible.

Also note that Var(ζ2) scales up with the real discounted wage and with underlying income risk

itself. The literature has emphasized the importance of cyclicality of earnings risk [Bilbiie (2021),

Ravn and Sterk (2020), Acharya and Dogra (2020)]. Procyclical income risk exacerbates Var(ζ2),

implying higher precautionary savings.

4 Implications

The aggregation theorems of the previous section are proved for a generic auctioneer. This generality

affords us the opportunity to study several different types of auctioneers that are popular in the

literature.12 We show how aggregation can be quickly assessed using the auctioneer proposed by

Aiyagari (1994) and Huggett (1997). We then study the auctioneer of Krusell and Smith (1998),

Castaneda, Dı́az-Giménez, and Rı́os-Rull (1998) and den Haan (1993), which has served as the

most popular numerical approach to solving macroeconomic models with heterogeneity. We offer

a novel interpretation of the auctioneer’s output and an improvement on the numerical procedure.

12As such, our focus will be primarily on dynamic economies. In two-period environments, the modeler has
complete control of the initial distribution of wealth and can make households sufficiently poor (wealthy) to break
(preserve) aggregation. While controlling the extent to which an economy aggregates can be useful for many thought
experiments [Chatterjee (1994)], it is counter to standard dynamic analysis which seeks to eliminate dependence on
initial conditions. Nearly all dynamic heterogeneous agents models study the evolution of the distribution of wealth
and/or examine perturbations around some well-defined steady state, and we follow suit.

18



Chipeniuk, Katz & Walker: Aggregation

4.1 Steady-State Auctioneer and a Paper-Pencil Assessment of Aggregation Con-

sider the steady-state auctioneer, which specifies a single, constant value for all prices in all periods.

In a pure credit setting, this amounts to a Huggett Auctioneer which fixes a constant interest rate

[Huggett (1993)]. In a production setting, this can take the form of an Aiyagari Auctioneer, which

specifies a single aggregate capital labor ratio K/L for every future period and computes prices

consistent with firm optimization, equations (3) and (4) [Aiyagari (1994)].

Steady state analysis is often used to simplify the economics and provide insights that are

of the paper-and-pencil variety. We show how this carries over to the analysis of aggregation

with the help of a steady-state auctioneer. Consider substituting steady-state auctioneer values,

Fss = {Kss, Lss, Rss,Wss}, into the typical household’s savings function (17) under log utility and

for T → ∞. Because we do not have a closed-form expression for the nonlinear component, ǫ(t), we

cannot solve directly for the corresponding steady state values.13 However, we can use the theorems

of the previous section and the main results of Aiyagari (1994) and Huggett (1997) to provide an

assessment of aggregation that only requires a few lines of algebra.

Huggett’s primary result is that when idiosyncratic uncertainty is present, the steady state

capital stock obeys the inequality βf ′(K) < 1 (Theorem 1, pg. 391), where production fol-

lows f(K) ≡ F (K, 1) + (1 − δ)K and F (·) satisfies the usual constant returns to scale assump-

tion. Thus, the steady state capital stock with idiosyncratic uncertainty is strictly larger than the

representative-agent (RA) steady state, KRA. If we fix the amount of capital in the heterogeneous-

agent economy to the RA steady state value, knowing that the true value is higher due to the

result of Huggett (1997), we can then ask: at this level of wealth, what fraction of households are

constrained, λ(c)? If this value is low (high), the economy will (not) approximately aggregate.

To provide a more concrete example, consider the following thought experiment: a lazy economist

wants to understanding the approximate aggregation result of Krusell and Smith (1998) without

having to do any numerical analysis (hence the “lazy” moniker). The economist has on hand the

typical household’s savings function under log utility, (17), and recalls that the unique RA steady

state is given by

KRA

LRA

=

(

α
1
β − (1− δ)

) 1
1−α

, WRA = (1− α)

(

KRA

LRA

)α

, RRA = β−1 − (1− δ)

ZRA = 1, ỸRA = Kα
RAL

1−α
RA + (1− δ)KRA = LRA

((

KRA

LRA

)α

+ (1− δ)
KRA

LRA

)

Substituting these steady state values into the savings function (17) and assuming14 that, on

average, households are employed at constant rate πe gives the typical household’s savings function

13In a continuous-time setup, Achdou, Han, Lasry, Lions, and Moll (2021) show that there is a unique stationary
equilibrium if the intertemporal elasticity of substitution is greater than one.

14Here we follow the literature in assuming that the endowment is transformed to labor input according to ℓt = ℓ̄et,
where ℓ̄ is a normalizing constant and et is the employment shock unique to each household. Note that our approach
can accommodate a more sophisticated process for the idiosyncratic labor shock.
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as

k(t) = β

((

KRA

LRA

)α

+ (1− δ)
KRA

LRA

)

ωt − β(1− α)

(

KRA

LRA

)α

πe + ǫ(t) (20)

where household wealth, xt, is denoted as a share ωt of total resources ỸRA. The economist can

then solve for the share of wealth which represents the point in the distribution where households

would like to borrow against future labor earnings in the linear (Gorman) savings function. This

value is found by setting ǫt and (20) equal to zero, and solving for ω. This particular share of

wealth is the x-intercept in the linear savings function in Figures 2 and 3, and is given by

ω⋆
|RA

=

(

(1− α)πe
1 + α(1− δ)/RRA

)

=

(

(1− α)πe(1− β(1− δ))

1− β(1− δ)(1 − α)

)

(21)

The value of wealth given by (21) represents a point of substantial curvature in the household’s

savings function. The intuition follows from our main theorems in Section 3, which prove that the

savings function would be driven nearly entirely by the nonlinear component ǫ(t) when evaluated at

ω⋆. This intuition also accords with Huggett (1997), who shows that the inequality βf ′(K) < 1 can

neither be attributed to a high rate of time preference relative to the interest rate nor a positive third

derivative of the period utility function, but is due to binding borrowing constraints. Our economist

plugs in the quarterly calibration of Krusell and Smith (1998) (α = 0.36, β = 0.99, δ = 0.025),

coupled with the assumption that agents have a 4% chance of unemployment each period, to get

ω⋆ = 5.6%. In this case, the borrowing constraint binds at only 5.6% of steady-state wealth (capital

holdings of slightly greater than 2 given a RA steady state capital stock of roughly 38), suggesting

that very few households will have nonlinear savings functions.

How does our economist know that this metric is a reliable statistic? Accuracy of this measure

is lost if the RA steady state does not have substantial point mass in the heterogeneous agent

distribution. However, this is not likely given the focus on stationary distributions that has been

adopted by (nearly) the entire literature [Krusell and Smith (2006)]. Many of the best numerical

approaches employed to solve models with heterogeneity rely on grids and perturbation methods

that are built around steady states [e.g., Reiter (2010), Winberry (2018), Boppart, Krusell, and

Mitman (2018)]. Indeed, plotting a vertical line at the RA steady state capital stock would be a

value close to the mode of many heterogeneous agent distributions and this is certainly true of the

model of Krusell and Smith (1998). Moreover, Huggett’s result ensures that this is a lower bound.

As the steady state value for capital increases, the interest rate falls. From (20), the rise in wealth

due to higher aggregate capital is more than offset by the increase in discounted labor earnings.

Therefore, one can easily calculate the corresponding ω⋆ associated with an x% increase in the

steady state.

Finally, we view this thought experiment as a first step in understanding how a model aggre-

gates. It is not meant to replace rigorous analysis (we are not advocating for the “lazy” economist)

but provides a good assessment of aggregation at an extremely low cost. For example, a researcher
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might be interested in understanding how perturbations to certain parameters affect aggregation.

Steady state analysis is a good place to start.

4.2 Assessing the Finite-Moment Auctioneer By far the most popular auctioneer used

to numerically solve heterogeneous agent models is what we call the Finite-Moment Auctioneer.

Initially proposed in the early working papers of Krusell and Smith (1998), Castaneda, Dı́az-

Giménez, and Rı́os-Rull (1998) and den Haan (1993), this auctioneer forecasts aggregate capital

in future periods by using a law of motion which depends only on aggregate capital in the current

period and the current aggregate state. This formulation generalizes to the Higher-Order Moments

Auctioneer which forecasts capital using further distributional statistics, such as the variance, in

addition to the mean. The numerical implementation of the Finite-Moment Auctioneer is well

known and therefore only briefly described here. Our algorithm follows the standard stochastic-

simulation approach of Krusell and Smith (1998) (KS, henceforth).15

Standard Algorithm

1. Guess an initial savings function, aggregate law of motion, and cross-sectional distribution of
households. Generate a long sequence of total factor productivity shocks once and for all.

2. Solve the household’s problem by Euler equation iteration or value function iteration, be-
ginning from the initial savings function and using the aggregate law of motion to forecast
one-period-forward prices. Iterate until the savings functions converge up to some tolerance.

3. Use the savings function from Step 2 to simulate the cross-sectional distribution for the
sequence of TFP shocks generated in Step 1 via the procedure of Young (2010).

4. Use the simulated data generated in Step 3 to update the aggregate law of motion by ordinary
least squares regression (in the case of a law which is linear in coefficients).

5. Repeat steps 2-4 until the aggregate law of motion converges within some tolerance.

6. Test for equilibrium. For example, one can compute the R2 fit of the regression in Step 4, or
use the procedure advocated by den Haan (2010).

In this section, we focus on interpreting the auctioneer output of Steps 4–6. Remarkably—and

to the best of our knowledge—the literature does not contain an interpretation of the regression

output along the lines proposed here. We show that approximate aggregation is not the key insight,

nor the driving force of this algorithm, as claimed by Krusell and Smith (2006). We then use this

interpretation to offer an improvement of Step 6 in the following section.

15The algorithm is more aptly described as a modified version of the stochastic-simulation algorithm due to Maliar,
Maliar, and Valli (2010), which combines that paper’s household solving method with the simulation procedure of
Young (2010). For all results reported below, the algorithm was implemented in the programming language Julia.
Interpolation in Step 2 uses cubic splines via the Julia package Dierckx, which acts as a wrapper for the FORTRAN
package of the same name.
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Interpreting Regression Output Initially, we set δ = 1 as complete depreciation of capital

permits cleaner exposition, and assume the standard calibration {σ = 1; δ = 1;α = 0.36;β =

0.99;T → ∞} with the stochastic processes for technology and the labor market following KS. The

converged equilibrium law of motion for the two aggregate states from 1,000 simulated draws is

computed to be

log(K ′) = −0.0090 + 0.3605 log(K), R2 = 1, s = good (22)

log(K ′) = 0.0522 + 0.3603 log(K), R2 = 1, s = bad (23)

The R2 values contain eight 9’s after the decimal, so we rounded up.

Defining Ωt as the share of aggregate output invested, Kt = ΩtYt, it is well known that the

representative agent equilibrium with log utility and complete depreciation of capital can be calcu-

lated in closed form. Under this scenario, the share of aggregate investment is time invariant and

given by Ω = αβ. Thus we have Kt = αβYt = αβKα
t−1L

1−α
t and taking logs gives

log(Kt) = log(αβ) + log(zt) + α log(Kt−1) (24)

where we have assumed the representative agent inelastically supplies one unit of aggregate labor

in each period. Simulating data from (24) would yield a nearly deterministic law of motion for

aggregate capital. Running regressions (22)–(23) on this simulated data would deliver an R2 of

approximately one, slope coefficient of α, and intercept of log(αβ)+ log(zj). With the exception of

the intercept term, (24) is a good approximation of (22)–(23).16

The intuition of this result dates back at least to the optimal portfolio literature of Merton

(1969) and Samuelson (1969). With log utility and i.i.d. returns, the optimal portfolio, expressed

as a percentage of wealth, is independent of the level of wealth. Complete depreciation of capital

breaks the time dependence of returns and the technology shock merely alters the level of wealth in

the economy. The optimal share of investment (Ω) is constant and the coefficient of determination

(R2) is identically one.

This intuition carries over to heterogeneous agent models, which can be seen by rewriting the

16The R2 values are not exactly one and there are slight differences in the coefficients across states because the
idiosyncratic shock is correlated with the aggregate shock in the KS environment, and because aggregate labor is not
identical across the two regimes. The intercept term is not well approximated because there is no labor uncertainty
in the standard representative agent model. A better approximation of (22)–(23) that takes labor uncertainty into
account is given by the linear-nonlinear decomposition of Section 3. Defining the average share of (un)employed
households born at time t as (stu) s

t
e, then the linear component of aggregate capital is Kt = stuku,t + steke,t,

Kt(1 + β) = βsteW
(g)
t L

(g)
t − (stuπggue + steπggee)

(

W
(g)
t+1L

(g)
t+1

R
(g)
t+1

)

− (stuπgbue + steπgbee)

(

W
(b)
t+1L

(b)
t+1

R
(b)
t+1

)

where the idiosyncratic transition probabilities are conditional on aggregate states following Krusell and Smith (1998):
πggue represents the probability of the aggregate state remaining “good” and transitioning from unemployed (u) to
employed (e).

22



Chipeniuk, Katz & Walker: Aggregation

household’s budget constraint (2) in terms of shares,

ct = Rtkt−1 +Wtℓt − kt = RtKt−1st−1 +WtLtet − ΩtYtst

= (αst−1 + (1− α)et − Ωtst)Yt (25)

where st is the household’s share of aggregate investment stKt = kt and et is the household’s

share of the aggregate wage bill. Substituting the constraint into the log utility function reveals an

optimal savings / consumption allocation that is independent of the level of wealth. That is, taking

logs of (25) separates the choice variable, st, from aggregate output, Yt. That the optimal share

of investment for each household is independent of the level of wealth implies that the aggregate

investment share (Ω) will also be independent of the level of wealth, and therefore time invariant.

Households care only about their share of the pie and not the overall size of the pie, which is

changing with aggregate shocks. This result is important in our analysis of aggregation because it

holds independent of aggregate wealth and therefore holds independent of aggregation. Wealth can

be sufficiently low such that aggregation fails and the aggregate investment share (Ω) will remain

constant, implying R2 values will remain close to one. This can be seen from our results in (22)–

(23). The R2 values for the complete depreciation case are higher than the standard calibration

(results reported in footnote 14) despite the fact that approximate aggregation is no longer holding

as strongly. We provide additional evidence for this result in the following section.

When δ 6= 1, the optimal amount of aggregate capital is a function of total resources, including

undepreciated capital, Kt = Ωt(Yt + (1 − δ)Kt−1) = Ωt(ztK
α
t−1L

1−α
t + (1 − δ)Kt−1). The share

of resources invested, Ωt, now varies with the level of wealth as the return to capital is not time

independent. Thus, the law of motion for capital will not be linear in logs. However, taking

advantage of the approximation log(1 + x) ≈ x for small x, we have

ln(Kt) = ln(Ωt) + ln(Kt−1) + ln(ztK
α−1
t−1 L1−α

t + (1− δ))

≈ ln(Ωt) + ln(Kt−1) + ztK
α−1
t−1 L1−α

t − δ (26)

where ztK
α−1
t−1 L1−α

t − δ ≈ 0.07 for K ≈ 40, z = L = 1, which are the steady state values for these

variables. From (26), the regression slope coefficient will be slightly less than one and the intercept

term will be close to zero, which is consistent with standard results.17 That the R2 remains close

to one—which is also a standard result—implies that there is not much time variation in the share

of output invested (Ω). While the share of output invested is no longer constant as in the complete

depreciation case, conditioning on the aggregate state (Ωj) implies a near constant value set by the

auctioneer. The upshot here is that R2 values are not necessarily tied to aggregation. Aggregation

17The original KS regressions give

log(K′) = 0.095 + 0.962 log(K), R2 = 0.999998, s = good

log(K′) = 0.085 + 0.965 log(K), R2 = 0.999998, s = bad
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can fail and the R2 values can be close to one; conversely, a representative agent model can generate

“low” R2 values.

In order to carefully assess the algorithm, we require a setup in which aggregation is not the

base case. The importance of T highlighted in Section 3.3 suggests a particular model structure

that preserves the theory of Section 3 while providing the best chance of breaking aggregation.18

Specifically, time is discrete and infinite. In each period, a measure 1/T of T -period lived households

is born, so that at any given time there is a unit measure of living individuals. Households behave

according to the theory described in Section 3. Equilibrium for this economy will now involve a

distribution Λs(k, ℓ, t) at time s of households across capital k, employment ℓ, and age t = 1, ..., T .

For each time s, we initialize the new cohort by fixing Λs(0, 0, 1) = us/T and Λs(0, 1, 1) = (1 −

us)/T , where us is the average unemployment rate corresponding to the aggregate state at time s.

Households born into unemployment are given a small unemployment benefit (µ), which is paid by

taxing the wage of current workers. This overlapping-generations, life-cycle framework has several

advantages. First, as T → ∞, it replicates well-known environments (Aiyagari (1994), Krusell and

Smith (1998)). Second, for T = 2, we are able to study an exact equilibrium; that is, one that is not

subject to the curse of dimensionality. This facilitates a precise evaluation of common numerical

approaches. Third, it is a natural environment for breaking aggregation as households representing

different generations have different marginal propensities to save, as documented above. Finally,

an infinite horizon economy permits the study of simulation methods and steady state analysis.

Thus, we can use the KS algorithm described above to solve the model.

Assessment of Step 6: Testing for Equilibrium The literature continues to rely on re-

gression statistics such as the coefficient of determination (R2) as a test of the equilibrium (Step

6), despite den Haan’s (2010) compelling counter-examples that show arbitrarily high R2 values

may not correspond to accurate aggregate laws of motion. We now show that low R2 values do not

always imply inaccurate laws of motion.

Example 1: Let T = 2 and simulate an exact sequence of equilibrium capital values {Kt}
N
t=1 using

the guess-and-verify algorithm in Appendix B. Define the auctioneer’s law of motion as a function

of investment, It ≡ Kt− (1− δ)Kt−1, as opposed to log capital; that is, estimate It = a0,j + It−1a1,j

for j = {g, b} with the simulated data. The corresponding R2 values are 0.0786024 (good) and

0.110295 (bad). Any researcher using the current standards for Step 6 would clearly reject this

particular law of motion. However, the accuracy of this “investment auctioneer” is not nearly

as poor as the R2 suggests. Since investment is defined as δ-differenced capital, the auctioneer is

estimating a flow variable (investment) as opposed to a stock (capital). The fit of the regression will

be significantly lower but it does not imply that economically meaningful estimates are impossible

to achieve. Using the estimated law of motion for investment to forecast next period’s aggregate

capital, the maximum error is only 1.6% and the average error is 0.6%. This auctioneer would

provide extremely accurate values of tomorrow’s aggregate capital (and hence tomorrow’s interest

18The model and numerical approach to solving it are described in Appendix B.
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rate) to households, despite having an R2 value close to zero.

Example 2: Consider another example that uses our knowledge of an exact equilibrium (T = 2):

From the previous section, we established that the share of output invested is nearly time invariant

when T = 2, implying an R2 very close to one. We follow the standard methodology for solving

and evaluating the equilibrium. Specifically, we define idiosyncratic grid points distributed on an

interval around the deterministic steady state according to the polynomial rule kj = (j/100)7Kmax,

for j = 1, ..., 100, while four aggregate grid points are distributed linearly on an interval around

the deterministic steady state. Convergence criteria for the log linear aggregate law of motion was

set to 1e−6. The R2 values of the converged law of motion are roughly 0.99997 for both states.

The mean/max Den-Haan forecast errors are 0.003%/0.01%, respectively.19 These are clearly

acceptable values. However, mean capital is roughly 37% below the actual equilibrium average, and

the simulated equilibrium paths never cross. Experienced computational economists will perform

several additional robustness checks to find that increasing the number of aggregate grid points

substantially changes the equilibrium. For example as the number of aggregate grid points is

increased to 100, the R2 approaches 0.999999997, the mean/max Den-Haan error falls to 4.2e-

5/1.3e-4, and the actual equilibrium is accurately approximated. Those with insufficient experience

may view the initial R2 / Den-Haan statistics as acceptable values, and poorly approximate the

true equilibrium.

Example 3: This example follows from the results in Krueger and Kubler (2006). Aggregation

interacts with the regression statistics in important ways. If we plot the corresponding R2 values

against T using the standard log-linear law of motion (22)–(23), we would get a u-shaped figure with

the minimum occurring at T = 9. While the R2 values are lowest where aggregation is least likely

to hold, these values are still quite high (0.9977, 0.9978 for T = 9). Moreover, adding moments to

the regression, which is the standard operating procedure when R2 values fall, does not alter the

equilibrium substantially. For values of 7 ≤ T ≤ 15, the maximum difference in the mean capital

stock between the “mean only” regression and “mean plus variance” regression is less than 3%.

Krueger and Kubler (2006) advocate for a superior projection / Smolyak algorithm that better fits

the evolving distribution of wealth.

The issue that our examples highlight is that the current set of “convergence” statistics do not

give cut-off points instructing users when to search for alternative computational strategies. Con-

sequently, the statistics currently used to test for an equilibrium can lead to erroneous conclusions.

Both type I and type II errors are possible: rejecting a perfectly reasonable guess for the aggregate

law of motion (Example 1) and accepting a law of motion that is quite far from the true equilibrium

(Examples 2 and 3). This is true for both the R2 values and the more-recent Den-Haan statistics.

We propose taking advantage of the dichotomous nature of the problem to assess the accuracy

of the auctioneer. Conditional on a guess for the auctioneer’s values, the household’s problem is

19In the context of the KS model, den Haan (2010) defines forecast errors as ut+1 ≡ |K̂t+1 −Kt+1|, where K̂t+1

is simulated from the estimated law of motion (e.g., (22)–(23)), and Kt+1 is obtained by drawing a new sequence of
exogenous shocks and simulating the model.
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extremely well posed: Proposition 1 proves existence and uniqueness conditions; each household’s

problem can be solved in isolation, implying an embarrassingly-parallel computing strategy can

be deployed; and finally, the solution to the households’ problem provides an arbitrarily precise

evaluation of the auctioneer through the market clearing mechanism. Any guess of the auctioneer’s

values must be consistent with the market-clearing behavior of the individual households. This

suggests an iterative procedure for solving the auctioneer’s problem.

4.3 Improving the Finite-Moment Auctioneer Our suggested numerical procedure follows

Steps 1–5 of the standard algorithm but replaces Step 6 with the following:

Updated Step 6: Using the simulated values for the (converged) aggregate capital stock {K0
t }

N
t=1

and the converged law of motion for aggregate capital

log(K ′) = α0
0,j + α0

1,j log(K), j = {good,bad} (27)

produced by Steps 1–5, generate a sequence of one-step-ahead forecasts for interest rates and wages
{R0

t ,W
0
t }

N
t=2 from the firm’s first-order conditions. Using the interest rate and wage sequence

{R0
t ,W

0
t }

N
t=2, repeat steps 1 to 5 to obtain a new aggregate series {K1

t }
N
t=1. If this series is within

tolerance of {K0
t }

N
t=1, stop. Otherwise, replace {K0

t }
N
t=1 with {K1

t }
N
t=1 and repeat.

This evaluation step replaces model-dependent statistics—like the R2—with an iterative proce-

dure for the auctioneer. Therefore, convergence criteria can be applied to the auctioneer’s problem

in much the same way that it is applied to the household’s problem. It views the output coming

from Steps 1–5 as a “potential solution,” to be used as the initial sequence in the iteration. In the

notation of the household’s problem defined in Sections 2.5–2.4, the initial sequence and aggregate

law of motion are a guess for the auctioneer predictions, F , which is the interest rate and wage

sequence {R0
t ,W

0
t }

N
t=2. As discussed in those sections, the auctioneer’s guess must satisfy optimal-

ity and market clearing conditions. Thus, the iterative procedure disciplines the auctioneer’s guess

along these lines.

From a numerical standpoint, the Updated Step 6 replaces the aggregate grid with the simulated

values for aggregate capital and prices. The entire empirical distribution of capital is therefore

evaluated. The iteration essentially operationalizes the D-H forecast errors, which are defined as

ut+1 ≡ |K̂t+1 −Kt+1|, where K̂t+1 is simulated from the estimated law of motion (e.g., (22)–(23)),

and Kt+1 is obtained by solving the household’s problem. Step 6 states that if these errors are

too large, an update of the auctioneer’s sequence is warranted. The downside of the Updated

Step 6 is that the model must be solved again. However, we do not view this as a major obstacle

given the computational ease with which the household’s problem can be solved20, and potential

efficiency gains may be made by employing a relatively coarse histogram of the simulated empirical

distribution.

20The speed of the Updated Step 6 depends upon the number of simulated values N and optimality of the initial
aggregate grid. The values reported in Table 1 for T = 4 and N = 1, 000 took 63 seconds using Matlab’s Parallel
Computing Toolbox on a Windows 10 machine with an Intel Xeon 3.50 GHz processor, 4 physical cores and 32 GB
of RAM. Note that the model was solved in Matlab, not Julia, for this exercise.
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T = 2 T = 3 T = 4

Stand. Add Var. Auc. Iter. Stand. Add Var. Auc. Iter. Stand. Add Var. Auc. Iter.

R2 (good) 0.9999 0.9999 0.9999 0.9647 0.9790 0.9985 0.9816 0.9912 0.9999

R2 (bad) 0.9999 0.9999 0.9999 0.9790 0.9824 0.9974 0.9895 0.9934 0.9995

D-H (max) 0.0237 0.0131 1.3e−7 0.0117 0.0117 3.2e−7 0.1596 0.1325 4.0e−7

D-H (mean) 0.0097 0.0056 1.2e−8 0.0020 0.0021 4.5e−7 0.0252 0.0235 5.6e−7

% Avg Dev 37.59% 26.93% 9.2e−5 30.43% 26.23% 8.9e−8 15.21% 15.13% 9.6e−9

Table 1: Values of the coefficient of determination (R2), Den-Haan statistics (D-H), and percentage
deviation from equilibrium (% Mean Dev.) are reported for the Standard Algorithm (Stand.),
Standard Algorithm plus Second Moment (Add Var.), and the Auctioneer Iteration (Auc. Iter.)
for T = 2, 3, 4.

Table 1 demonstrates the usefulness of adding an iterative check on the auctioneer’s problem for

T = 2, 3, 4. The table reports the converged solution and diagnostics for the Standard Algorithm

(Stand.), the Standard Algorithm with an additional second moment added to the aggregate law

of motion (Add Var.), and the Standard Algorithm with Step 6 replaced with the Updated Step 6

(Auc. Iter.), with an auctioneer iteration tolerance of 1e−8. As in Example 2, the algorithms were

implemented with sparse aggregate grids (six aggregate grid points) which generated equilibria

that were far from the true bounded-rational equilibrium yet with reasonable values for the R2

and D-H statistics. The last row of Table 1 reports the percentage deviation of average aggregate

capital from the true value, which was obtained through a well-placed, dense aggregate grid (64

grid points).

Without an iterative procedure for the auctioneer’s problem, it is impossible to determine when

theR2 statistic is sufficiently close to one and when the D-H statistics are sufficiently small. For each

value of T and especially for T = 2, the R2 values are quite high and the D-H statistics are low but

the equilibrium remains far from the true value for the standard algorithm. The current operating

procedure is to add moments to the aggregate law of motion when the regression fit is sufficiently

poor. However, adding the second-moment does not dramatically improve the performance of the

algorithm. The Updated Step 6 (Auctioneer Iteration) replaces the sparse aggregate grid with the

simulated values of aggregate capital generated by the standard algorithm. In all cases (T = 2, 3, 4),

the updated algorithm finds the more accurate solution.

It is perhaps more telling when the Auctioneer Iteration does not converge. For values of

T greater than six, the updated algorithm does not converge without a substantial reduction in

auctioneer tolerance. This is a clear indication that the guess for the auctioneer’s law of motion

needs modification. In these examples, the R2 and D-H statistics do fall but not substantially so

(recall that the trough in R2 does not occur until T = 9). Again, without an iterative procedure

with set tolerance, it is impossible to know when an R2 value or D-H statistic is “too low.” The

Updated Step 6 provides much clearer guidance.
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5 Concluding Thoughts

We examined uninsurable employment risk with aggregate shocks by introducing a Walrasian auc-

tioneer, who reports to households all possible state-contingent future prices. Households take these

as given when forming expectations and making optimal consumption choices, and the auctioneer

adjusts her forecasts until markets clear. By taking advantage of this natural dichotomy between

the households and the auctioneer, we studied each problem in isolation. On the household side,

we separate an explicit expression for the linear permanent income component of savings from a

well-behaved nonlinear adjustment arising from precautionary behavior and incomplete markets.

Equipped with this decomposition, we then study how economies aggregate in the presence of var-

ious auctioneer types that are popular in the literature. We provided an economic interpretation

of the regression coefficients and explained the lack of time variation in the auctioneer of Krusell

and Smith (1998). We also introduced a new numerical method which uses the empirical distribu-

tion of auctioneer forecasts to substantially improve solution accuracy in cases where the standard

coefficient of determination and other well-known statistics prove to be misleading.
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6 Appendix A (Not for Publication)

In this appendix next we provide rigorous proofs of our theoretical results leading up to the main

theorems. We begin with Proposition 1, which establishes existence and uniqueness for the house-

holds’ dynamic programming problems. This proof is a straightforward exercise in finite horizon

dynamic programming. For convenience, we recall the statement here.

Proposition 1: Household Existence and Uniqueness. There is a unique solution to the household’s

dynamic programming problem (6). The associated savings functions k(t) are increasing (strictly

for t < T ) with respect to xt and satisfies

lim
xt→kt

k(t)(xt,Lt,Ft) = kt,

lim
xt→∞

k(t)(xt,Lt,Ft) = ∞, t < T

The corresponding value functions are strictly increasing and strictly concave with respect to ω

and satisfy

lim
xt→kt

V (t)(xt,Lt,Ft) = −∞

Proof. The proof is an induction, beginning with the terminal period T . Since V (T+1) ≡ 0, it is

immediate that the unique solution to the terminal problem is c(T )(xT ,Lt,Ft) = xT and k(T ) ≡ 0,

with corresponding value function V (T ) = u(xT ). The savings function is trivially increasing,

while the value function is strictly increasing and strictly concave by our selection of preferences.

Moreover, in this case we have kT = 0, and so that the stated limits at the borrowing constraint

hold, trivially in the case of k(T ) and due to the asymptote of the period utility function in the case

of V (T ).

Having established the base case, we now suppose that, given t < T , we have a unique solution

(c(t+1), k(t+1), V (t+1)) satisfying the stated properties. As discussed in the main text, the natural

borrowing limit implies that the first order conditions are necessary and sufficient for a solution to

the household problem. Writing this condition in period t, we have

1

(xt − kt)σ
= βEt(1− δ +Rt+1)

∂V (t+1)(xt+1,Lt+1,Ft+1)

∂xt+1

For a fixed value of xt, the left side of this equation is strictly increasing in kt ∈ (kt, xt), and

increases without bound as kt → x−t . On the right side, the limit at kt is ∞ due to the asymptote

in the value function at the borrowing constraint. Moreover, since xt+1 is strictly increasing in

kt, strict concavity of the value function in resources implies that the right side of the equation is

strictly decreasing. It follows from these observations that there is a unique value k(t)(xt,Lt,Ft)

such that the equation balances.

33



Chipeniuk, Katz & Walker: Aggregation

To see that the savings function is increasing, we differentiate implicitly the first order condition

to get

−σ

(xt − kt)σ+1

(

1−
∂k(t)

∂xt

)

= βEt(1− δ +Rt+1)
2

(

∂2V

∂x2t+1

)

∂k(t)

∂xt

Solving for the derivative of the savings function, we have

(

σ

(xt − kt)σ+1
− βEt(1− δ +Rt+1)

2

(

∂2V

∂x2t+1

))

∂k(t)

∂xt
=

σ

(xt − kt)σ+1

Once again applying concavity of the value function, we see that all terms here are positive, which

establishes (strict) monotonicity.

The limit of the savings function at resources amounting to the natural borrowing limit follows

immediately from the squeeze theorem, since kt ≤ k(t) ≤ xt. We can translate this inequality to

read

0 ≤ xt − k(t)(xt,Lt,Ft) ≤ xt − kt

which show in turn that c(t) → 0 as resources approach the borrowing limit. Then, writing

V (t)(xt,Lt,Ft) = u
(

xt − k(t)(xt,Lt,Ft)
)

+ βEtV
(t+1)(xt+1,Lt+1,Ft+1)

the asymptote for the period t value function follows from inspection of the first term. The limit of

the savings function at ∞ is evident from the Euler equations (7)-(8) along with the definition of

xt+1. In particular, if household resources in period t are increased without bound, xt → ∞, while

household savings (and hence period t+ 1 resources) remain bounded, the left side of the period t

Euler equation would vanish while the right side remained strictly positive, a contradiction.

Monotonicity and convexity of the value function follow from the envelope conditions. Explicitly,

differentiating the above expression

∂V (t)

∂xt
=

1

(xt − k(t))σ

(

1−
∂k(t)

∂xt

)

+ βEt
∂V (t+1)

∂xt+1
(1− δ +Rt+1)

∂k(t)

∂xt

∂2V (t)

∂x2t
=

−σ

(xt − k(t))σ+1

(

1−
∂k(t)

∂xt

)2

+ βEt
∂2V (t+1)

∂x2t+1

(1− δ +Rt+1)
2

(

∂k(t)

∂xt

)2

−
1

(xt − k(t))σ
∂2k(t)

∂x2t
+ βEt

∂V (t+1)

∂xt+1
(1− δ +Rt+1)

∂2k(t)

∂x2t
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Using first order conditions to simplify these, we therefore get (respectively)

∂V (t)

∂xt
=

1

(xt − k(t))σ
> 0

∂2V (t)

∂x2t
=

−σ

(xt − k(t))σ+1

(

1−
∂k(t)

∂xt

)2

+ βEt
∂2V (t+1)

∂x2t+1

(1− δ +Rt+1)
2

(

∂k(t)

∂xt

)2

< 0

as desired. This closes the induction.

Next, we derive the savings function in the deterministic environment with a natural borrowing

limit. We will do so in the case of general risk aversion parameters σ. First we recall the expression

in the form of a proposition.

Proposition 2: Savings in a Deterministic Production Economy. Let

QT−1 =
[

β(1 − δ +RT )
1−σ
]1/σ

Qt =
[

β(1 − δ +Rt+1)
1−σ
]1/σ

(1 +Qt+1), t = 1, ..., T − 2

In the production economy without uncertainty, the household savings function is given by

kt(xt) =
Qt

1 +Qt
xt −

1

1 +Qt

(

T
∑

s=t+1

Wsℓ
∏s

r=t+1(1− δ +Rr)

)

Proof. Taking σth roots in the terminal Euler equation, we obtain

xT−1 − kT−1 =
xT

(β(1− δ +RT ))
1/σ

=
(1− δ +RT )kT−1 +WT ℓ

(β(1− δ +RT ))
1/σ

=
kT−1 +

WT ℓ
1−δ+RT

(β(1− δ +RT )1−σ)1/σ

Solving for kT−1 gives

kT−1 =

(

β(1 − δ +RT )
1−σ
)1/σ

1 + (β(1− δ +RT )1−σ)1/σ
xT−1 −

1

1 + (β(1− δ +RT )1−σ)1/σ
WT ℓ

1− δ +RT

In terms of the definition of QT−1 and the savings function, this says

k(T−1)(xt) =
QT−1

1 +QT−1
xT−1 −

1

1 +QT−1

WT ℓ

1− δ +RT

We can now proceed by induction, using the formula for the period t+1 savings function to simplify
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the period t Euler equation. We can write this equation as

xt − kt =
kt +

Wt+1ℓ
1−δ+Rt+1

− kt+1

1−δ+Rt+1

(β(1− δ +Rt+1)1−σ)1/σ

This will be satisfied taking kt and kt+1 given by the period t and t+1 savings functions, respectively.

Using the inductive hypothesis for the latter, with xt+1 = (1− δ+Rt+1)kt+Wt+1ℓ, we can rewrite

the Euler equation as

xt − kt =

1
1+Qt+1

kt +
1

1+Qt+1

Wt+1ℓ
1−δ+Rt+1

+ 1
1−δ+Rt+1

1
1+Qt+1

(

∑T
s=t+2

Wsℓ
∏s

r=t+2(1−δ+Rr)

)

(β(1− δ +Rt+1)1−σ)1/σ

=

1
1+Qt+1

kt +
1

1+Qt+1

∑T
s=t+1

Wsℓ
∏s

r=t+1(1−δ+Rr)

(β(1− δ +Rt+1)1−σ)1/σ

Solving for kt, we obtain the desired expression.

Next, we fill in the details of Theorem 1. This version of the theorem admits direct calculations

which will be replaced by more circumspect arguments as we allow for more generality. We begin

from the rearranged Euler equation (33).

Theorem 1: Nonlinear error, Log Utility. The savings function k(1)(x1) can be written in the form

k(1)(x1) =
1

1 + β

(

βx1 −
W2

1− δ +R2
E ℓ2 + ǫ(1)(x1)

)

where the nonlinear error term is strictly decreasing, strictly convex, and satisfies

lim
x1→k1

ǫ(1)(x1) =
W2

1− δ +R2
E1ℓ2 + k1, lim

x1→∞
ǫ(1)(x1) = 0

Proof. Having established (33) via the calculations in Section 3.2, we may express the right side as

k1 +
W2

1− δ +R2
(pℓlow + (1− p)ℓhigh)

+

(

k1 +
W2ℓlow
1−δ+R2

)(

k1 +
W2ℓhigh
1−δ+R2

)

k1 +
W2

1−δ+R2

[

pℓhigh + (1− p)ℓlow

] −

(

k1 +
W2

1− δ +R2
(pℓlow + (1− p)ℓhigh)

)

Writing the last two terms as a single fraction gives

(

k1 +
W2ℓlow
1−δ+R2

)(

k1 +
W2ℓhigh
1−δ+R2

)

−
(

k1 +
W2

1−δ+R2
(pℓlow + (1 − p)ℓhigh)

)(

k1 +
W2

1−δ+R2

(

pℓhigh + (1 − p)ℓlow

))

k1 +
W2

1−δ+R2

[

pℓhigh + (1− p)ℓlow

]
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which after some cancellation in the numerator yields

(

W2

1− δ +R2

)2 ℓlowℓhigh − (pℓlow + (1− p)ℓhigh) (pℓhigh + (1− p)ℓlow)

k1 +
W2

1−δ+R2

[

pℓhigh + (1− p)ℓlow

]

so that the right side of (33) is now

k1 +
W2

1− δ +R2
(pℓlow + (1− p)ℓhigh)

+

(

W2

1− δ +R2

)2 ℓlowℓhigh − (pℓlow + (1− p)ℓhigh) (pℓhigh + (1− p)ℓlow)

k1 +
W2

1−δ+R2

[

pℓhigh + (1− p)ℓlow

]

The numerator in the trailing expression can be written as

ℓlowℓhigh − (pℓlow + (1− p)ℓhigh) (pℓhigh + (1− p)ℓlow)

= (1− p2 − (1− p)2)ℓlowℓhigh − p(1− p)(ℓ2high + ℓ2low)

= (2p− 2p2)ℓlowℓhigh − p(1− p)(ℓ2high + ℓ2low)

= −p(1− p) (ℓhigh − ℓlow)
2

We can no write out (33) in its entirety as

β(x1 − k1)

= k1 +
W2

1− δ +R2
(pℓlow + (1− p)ℓhigh)−

(

W2

1− δ +R2

)2 p(1− p) (ℓhigh − ℓlow)
2

k1 +
W2

1−δ+R2

[

pℓhigh + (1− p)ℓlow

]

Collecting the terms linear in k1, this rearranges to give (34). As alluded to in the main text, then,

we apply Proposition 1 to conclude that there is a well-defined savings function k(1) which satisfies

this equation and the conditions of that proposition. Letting

ǫ(1) =

(

W2

1− δ +R2

)2 p(1− p) (ℓhigh − ℓlow)
2

k(1) + W2
1−δ+R2

[

pℓhigh + (1− p)ℓlow

] (28)

we have

k(1)(x1) =
1

1 + β

(

βx1 −
W2

1− δ +R2
E1ℓ2 + ǫ(1)(x1)

)

(29)

We must now establish properties of the nonlinear error term. The limit of this error term at the

borrowing constraint follows from the limit of the savings function at this constraint. Specifically,
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taking the limit in the above expression we have

k1 =
1

1 + β

(

βk1 −
W2

1− δ +R2
E1ℓ2 + lim

x1→k1
ǫ(1)(x1)

)

which we solve for

lim
x1→k1

ǫ(1)(x1) =
W2

1− δ +R2
E1ℓ2 + k1

To calculate the limit as resources increase without bound, we apply our knowledge that savings

increase without bound in this limit along with the definition (28) to get

lim
x1→∞

ǫ(1)(x1) =

(

W2

1− δ +R2

)2 p(1− p) (ℓhigh − ℓlow)
2

limx1→∞ k(1) + W2
1−δ+R2

[

pℓhigh + (1− p)ℓlow

]

= 0

To see monotonicity, observe that

∂ǫ(1)(x1)

∂x1
= −

(

W2

1− δ +R2

)2 p(1− p) (ℓhigh − ℓlow)
2

(

k(1) + W2
1−δ+R2

[pℓhigh + (1− p)ℓlow]
)2

∂k(1)

∂x1
< 0 (30)

where the inequality follows from the fact that the savings function is increasing.

To see convexity, first observe that the linear-plus-error structure implies that

∂2k(1)

∂x21
=

∂2ǫ(1)

∂x21
(31)

Then, taking a second derivative in (30) we have

∂2ǫ(1)(x1)

∂x21
= 2

(

W2

1− δ +R2

)2 p(1− p) (ℓhigh − ℓlow)
2

(

k(1) + W2
1−δ+R2

[pℓhigh + (1− p)ℓlow]
)3

∂k(1)

∂x1

−

(

W2

1− δ +R2

)2 p(1− p) (ℓhigh − ℓlow)
2

(

k(1) + W2
1−δ+R2

[pℓhigh + (1− p)ℓlow]
)2

∂2k(1)

∂x21

Using (31) and solving, we get

∂2ǫ(1)(x1)

∂x21
= 2

(

W2
1−δ+R2

)2 p(1−p)(ℓhigh−ℓlow)
2

(

k(1)+
W2

1−δ+R2
[pℓhigh+(1−p)ℓlow]

)3

1 +
(

W2
1−δ+R2

)2 p(1−p)(ℓhigh−ℓlow)
2

(

k(1)+
W2

1−δ+R2
[pℓhigh+(1−p)ℓlow]

)2

∂k(1)

∂x1

Every expression on the right hand side is positive, which gives convexity of the nonlinear error
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term. This completes the proof.

In order to prove our main theorems, we need the following lemma. While this lemma amounts

to a basic calculus exercise, it will be a vital ingredient in general versions of our theorems.

Lemma 1. Let A,B ∈ R and let f : R → R satisfy

lim
x→∞

(f(x)−Ax) = B

Then

lim
x→∞

(f(x)− (Ax+B)) = 0.

Proof. We have

lim
x→∞

(f(x)− (Ax+B)) = lim
x→∞

(f(x)−Ax)−B = B −B = 0

which proves it.

On a practical note, observe that

lim
x→∞

(

f(x)

x
−A

)

= lim
x→∞

(

f(x)−Ax

x

)

= lim
x→∞

(

B

x

)

= 0

Rearranging gives us a simple way to calculate the slope A:

A = lim
x→∞

f(x)

x

We are now ready to complete the proof of Theorem 1, in which we have omitted aggregate

uncertainty and restricted ourselves to two periods, while allowing for general period utility.

Theorem 2: Nonlinear Error, CRRA Utility. The savings function k(1)(x1) with log replaced by a

general CRRA utility function can be written in the form

k(1)(x1) =
1

1 +Q1

(

Q1x1 −
W2

1− δ +R2
E ℓ2 + ǫ(1)(x1)

)

,

with Q1 =
[

β(1− δ +R2)
1−σ
]1/σ

where the nonlinear error term is strictly decreasing, convex, and satisfies

lim
x1→k1

ǫ(1)(x1) =
W2

1− δ +R2
E1ℓ2 + k1, lim

x1→∞
ǫ(1)(x1) = 0
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Proof. To simplify our expressions, we will adopt the notation

wlow =
W2

1− δ +R2
ℓlow, whigh =

W2

1− δ +R2
ℓhigh

throughout the proof.

We begin from the rearranged Euler equation, which we restate here for convenience:

[

β(1 − δ +R2)
1−σ
]1/σ

(x1 − k1) =
(k1 + wlow) (k1 + whigh)

[p (k1 + whigh)
σ + (1− p) (k1 +wlow)

σ]1/σ

We will apply Lemma 1 to the right hand side of this equation. To this end, we calculate the limit

lim
k1→∞

(

(k1 + wlow) (k1 + whigh)

[p (k1 + whigh)
σ + (1− p) (k1 + wlow)

σ]1/σ
− k1

)

Expressing the argument as a single fraction, rearranged, we wish to calculate

lim
k1→∞









k21

(

1−
[

p
(

1 +
whigh

k1

)σ
+ (1− p)

(

1 + wlow
k1

)σ]1/σ
)

+ k1(wlow + whigh) + wlowwhigh

k1

[

p
(

1 +
whigh

k1

)σ
+ (1− p)

(

1 + wlow
k1

)σ]1/σ









We split the argument into three separate fractions, one for each term in the numerator, and

compute the limit of each. After some thought, the third of these limits is zero, while the second

is wlow + whigh. The first limit we rewrite as

lim
k1→∞









k1

(

1−
[

p
(

1 +
whigh

k1

)σ
+ (1− p)

(

1 + wlow
k1

)σ]1/σ
)

[

p
(

1 +
whigh

k1

)σ
+ (1− p)

(

1 + wlow
k1

)σ]1/σ









The denominator here has limit 1, so the above limit will equal

lim
k1→∞

(

k1

(

1−

[

p

(

1 +
whigh

k1

)σ

+ (1− p)

(

1 +
wlow

k1

)σ]1/σ
))

provided this limit exists. We rewrite the argument as

lim
k1→∞









(

1−
[

p
(

1 +
whigh

k1

)σ
+ (1− p)

(

1 + wlow
k1

)σ]1/σ
)

1/k1









and observe that the numerator and denominator both have limit equal to zero as k1 → ∞. We
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may therefore use l’Hospital’s rule to conclude that this limit is equal to that of

− 1
σ

[

p
(

1 +
whigh

k1

)σ
+ (1− p)

(

1 + wlow
k1

)σ] 1
σ
−1

(−1/k21)

×

[

σp

(

1 +
whigh

k1

)σ−1 (

−
whigh

k21

)

+ σ(1− p)

(

1 +
wlow

k1

)σ−1(

−
wlow

k21

)

]

This expression simplifies to give

−

[

p

(

1 +
whigh

k1

)σ

+ (1− p)

(

1 +
wlow

k1

)σ] 1
σ
−1

×

[

p

(

1 +
whigh

k1

)σ−1

whigh + (1− p)

(

1 +
wlow

k1

)σ−1

wlow

]

from which we can read off the limit as

−pwhigh − (1− p)wlow

Combining all three limits, we now get

lim
k1→∞

(

(k1 +wlow) (k1 + whigh)

[p (k1 + whigh)
σ + (1− p) (k1 + wlow)

σ]1/σ
− k1

)

= −pwhigh − (1− p)wlow + wlow + whigh

= E1w2

Applying Lemma 1, we conclude that

lim
k1→∞

(

(k1 + wlow) (k1 + whigh)

[p (k1 + whigh)
σ + (1− p) (k1 + wlow)

σ]1/σ
− k1 − E1w2

)

= 0

Denoting the argument of the limit by −δ(k1), we may therefore write the Euler equation in this

case as

[

β(1 − δ +R2)
1−σ
]1/σ

(x1 − k1) = k1 + E1w2 − δ(k1)

with limk1→∞ δ(k1) = 0. Rearranging, this becomes

k1 =
1

1 +Q1
(Q1x1 − E1w2 + δ(k1))

with Q1 as given in the theorem statement.

Once again invoking the existence proposition as in the proof of the previous theorem and
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letting ǫ(1)(x1) = δ
(

k(1)(x1)
)

, we obtain the desired decomposition

k(1)(x1) =
1

1 +Q1

(

Q1x1 − E1w2 + ǫ(1)(x1)
)

Taking limits at the borrowing constraint,

k1 =
1

1 +Q1

(

Q1k1 − E1w2 + lim
x1→k1

ǫ(1)(x1)

)

which we solve for

lim
x1→k1

ǫ(1)(x1) = E1w2 + k1

We also have

lim
x1→∞

ǫ(1)(x1) = lim
x1→∞

δ
(

k(1)(x1)
)

= 0

since k(1)(x1) → ∞ as x1 → ∞ (by the existence and uniqueness proposition) and δ → 0 as its

argument increases to ∞.

To establish that ǫ(1) is decreasing in resources, we observe that

∂ǫ(1)

∂x1
=

∂δ

∂k1

∂k(1)

∂x1

has the same sign as ∂δ/∂k1. Next we observe that the definition of δ(k1) satisfies

(

p

(k1 + wlow)σ
+

1− p

(k1 + whigh)σ

)−1/σ

= k1 + E1w2 − δ(k1) (32)

It therefore suffices to show that the derivative of the left side of the above equality with respect

to k1 is larger than unity. Calculating this derivative, it suffices to show that

(

p

(k1 + wlow)σ
+

1− p

(k1 + whigh)σ

)− 1
σ
−1( p

(k1 +wlow)σ+1
+

1− p

(k1 + whigh)σ+1

)

> 1

Rearranging, this is equivalent to the bound

(

p

(k1 + wlow)σ
+

1− p

(k1 + whigh)σ

)
1
σ

<

(

p

(k1 + wlow)σ+1
+

1− p

(k1 + whigh)σ+1

)
1

σ+1

That this inequality is true is a consequence of the fact that Lσ norms are increasing in σ (which

in turn follows from Jensen’s inequality).

The proof of convexity is similar. First, we once again observe that the linear-plus-error struc-
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ture implies that

∂2k(1)

∂x21
=

∂2ǫ(1)

∂x21

so that

∂2ǫ(1)

∂x21
=

∂2δ

∂k21

(

∂k(1)

∂x1

)2

+
∂δ

∂k1

∂2k(1)

∂x21

=
∂2δ

∂k21

(

∂k(1)

∂x1

)2

+
∂δ

∂k1

∂2ǫ(1)

∂x21

and consequently

(

1−
∂δ

∂k1

)

∂2ǫ(1)

∂x21
=

∂2δ

∂k21

(

∂k(1)

∂x1

)2

Since we have seen above that δ is decreasing in k1 it suffices to show that δ is convex.

Letting

h(k1) :=
p

(k1 + wlow)σ
+

1− p

(k1 + whigh)σ

g(k1) := h(k1)
−1/σ

we note that

∂2δ

∂k21
= −

∂2g

∂k21

so that it suffices to show that ∂2g/∂k21 < 0. We have

∂g

∂k1
= −

1

σ
h(k1)

− 1
σ
−1 ∂h

∂k1

∂2g

∂k21
= −

1

σ

(

−
1

σ
− 1

)

h(k1)
− 1

σ
−2

(

∂h

∂k1

)2

−
1

σ
h(k1)

− 1
σ
−1∂

2h

∂k21

=
1

σ
h(k1)

− 1
σ
−2

(

(

1

σ
+ 1

)(

∂h

∂k1

)2

− h(k1)
∂2h

∂k21

)

It therefore suffices that the expression in brackets in the last line is negative. To do so, we first
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observe that

∂h

∂k1
=

−σp

(k1 + wlow)σ+1
+

−σ(1− p)

(k1 + whigh)σ+1

∂2h

∂k21
=

σ(σ + 1)p

(k1 + wlow)σ+2
+

σ(σ + 1)(1− p)

(k1 + whigh)σ+2

so it suffices to show that

(

1

σ
+ 1

)[

−σp

(k1 + wlow)σ+1
+

−σ(1− p)

(k1 + whigh)σ+1

]2

−

[

p

(k1 +wlow)σ
+

1− p

(k1 + whigh)σ

] [

σ(σ + 1)p

(k1 + wlow)σ+2
+

σ(σ + 1)(1− p)

(k1 + whigh)σ+2

]

< 0

Clearing factors of σ and rearranging, this is equivalent to showing

[

p

(k1 + wlow)σ+1
+

(1− p)

(k1 + whigh)σ+1

]2

<

[

p

(k1 + wlow)σ
+

1− p

(k1 + whigh)σ

] [

p

(k1 + wlow)σ+2
+

(1− p)

(k1 + whigh)σ+2

]

That this inequality holds is a consequence of the Cauchy-Schwartz inequality. This completes the

proof of the theorem.

Proof of Proposition: Recall that the Euler equation (8) is necessary for optimality with the

natural borrowing constraint. Assuming log utility, we write the expected value out explicitly to

obtain

1

x1 − k1
= β

(

p(1− δ +R2)

(1− δ +R2)k1 +W2ℓlow
+

(1− p)(1− δ +R2)

(1− δ +R2)k1 +W2ℓhigh

)

Taking reciprocals and rearranging the aggregate quantities under the expected value rewrites this

as

β(x1 − k1) =

(

p

k1 +
W2ℓlow
1−δ+R2

+
(1− p)

k1 +
W2ℓhigh
1−δ+R2

)−1

The left hand side is an expression which is linear in x1 and k1, while the right hand side is

necessarily nonlinear in k1 due to the idiosyncratic uncertainty. Nonetheless, we can add the

fractions under the brackets to obtain

β(x1 − k1) =

(

k1 +
W2ℓlow
1−δ+R2

)(

k1 +
W2ℓhigh
1−δ+R2

)

k1 +
W2

1−δ+R2

[

pℓhigh + (1− p)ℓlow

] (33)

This form clarifies the structure of the right hand side: it consists of a rational function in k1 which
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is formed from the ratio of a quadratic polynomial to a linear one. The asymptotic behavior of

such a function is such that it approaches a linear asymptote as k1 → ∞. With some additional

algebra, we can extract this asymptote, rewriting the above as

k1 =

(

β

1 + β

)

x1 −
1

1 + β

(

W2

1− δ +R2

)

[pℓlow + (1− p)ℓhigh]

+
1

1 + β

(

W2

1− δ +R2

)2




p(1− p)(ℓhigh − ℓlow)
2

k1 +
W2

1−δ+R2

[

pℓhigh + (1− p)ℓlow

]



 (34)

To facilitate interpretation of this expression, let n2 := W2
1−δ+R2

(ℓ − ℓlow) denote the household’s

discounted excess earnings so that

n2 =







0 with probability p

W2
1−δ+R2

(ℓhigh − ℓlow) with probability 1− p

Then a straightforward calculation gives

Var(n2) = p(1− p)

[

W2

1− δ +R2
(ℓhigh − ℓlow)

]2

W2

1− δ +R2
ℓlow +

Var(n2)

E(n2)
=

W2

1− δ +R2

[

pℓhigh + (1− p)ℓlow

]

so that our rearranged Euler equation gives

k1 =
1

1 + β



βx1 −
W2

1− δ +R2
E ℓ2 +





Var(n2)

k1 +
W2

1−δ+R2
ℓlow + Var(n2)

E(n2)









We now give details of the proofs of our main theorems. The proof of the logarithmic case

illustrates the majority of the main features, while eliminating the somewhat tedious tracking of

recursive effective discount factors which appear in the general case. For this reason, we present

this case in detail before giving the argument in full generality.

We will find it convenient to introduce the notation o(f(x)) to denote any function g(x) such that

limx→∞ g(x)/f(x) = 0. In particular, o(1) denotes any function g(x) such that limx→∞ g(x) = 0.

Recall the statement of the theorem in the log case.

Theorem 3: Main Theorem, σ = 1. The savings functions k(t)(xt,Lt,Ft), t = 1, ..., T which solve

the dynamic programming problems (6) with σ = 1 can be written in the form

k(t)(xt,Lt,Ft) =
β + ...+ βT−t

1 + β + ...+ βT−t
xt −

1

1 + β + ...+ βT−t
Et

(

T
∑

s=t+1

Wsℓs
∏s

r=t+1(1− δ +Rr)

)

+ ǫ(t)(xt,Lt,Ft)
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where the nonlinear error term ǫ(t) is identically zero without uncertainty, and is strictly decreasing,

strictly convex, and satisfies

lim
x1→kt

ǫ(t)(xt,Lt,Ft) =
1

1 + β + ...+ βT−t

[

Et

(

T
∑

s=t+1

Wsℓs
∏s

r=t+1(1− δ +Rr)

)

+ kt

]

and

lim
x1→∞

ǫ(t)(xt,Lt,Ft) = 0

with uncertainty.

Proof. The proof is by induction, beginning with the period T − 1 savings function. The base

case essentially follows the argument given for the two period model detailed in Appendix I, albeit

with additional bookkeeping due to the inclusion of arbitrarily many shock outcomes and aggregate

uncertainty. Although it is lengthy, we provide the argument, to illustrate the algebra without the

need to worry about additional endogeneity due to future savings.

Base Case (T-1): We begin by writing out the expected value of the terminal Euler equation

(8). To facilitate this, for a given state (xT−1,LT−1,FT−1) of resources and predictive probabilities

at time T − 1 we let

{(ℓj , Rj ,Wj) : j = 1, ..., J}

denote the possible time T endowment and price outcomes which are assigned positive predictive

probability. We denote the associated predictive probabilities by pj. Moreover, we let wj =

Wjℓj/(1− δ +Rj).

With this notation in hand the Euler equation can be written out as

1

xT−1 − kT−1
= β





J
∑

j=1

pj
kT−1 + wj





= β

(

∑J
j=1 pj

∏

i 6=j(kT−1 + wi)
∏

j(kT−1 + wj)

)

Taking the reciprocal, this gives

β(xT−1 − kT−1) =

∏

j(kT−1 + wj)
∑J

j=1 pj
∏

i 6=j(kT−1 + wi)
(35)

The right hand side is a rational function whose numerator has degree J and whose denominator

has degree J − 1. We therefore expect this to approach some linear asymptote as kT−1 → ∞. To
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extract the asymptote, we write out the numerator and denominator, getting

β(xT−1 − kT−1) =
kJT−1 + kJ−1

T−1

∑

j wj + o(kJ−1
T−1)

kJ−1
T−1 + kJ−2

T−1

∑

j pj
∑

i 6=j wi + o(kJ−2
T−1)

We can now apply the lemma on the right hand side in a transparent way. Specifically, we have

lim
kT−1→∞

(

kJT−1 + kJ−1
T−1

∑

j wj + o(kJ−1
T−1)

kJ−1
T−1 + kJ−2

T−1

∑

j pj
∑

i 6=j wi + o(kJ−2
T−1)

− kT−1

)

= lim
kT−1→∞

(

kJT−1 + kJ−1
T−1

∑

j wj + o(kJ−1
T−1)− kJT−1 + kJ−1

T−1

∑

j pj
∑

i 6=j wi + o(kJ−1
T−1)

kJ−1
T−1 + kJ−2

T−1

∑

j pj
∑

i 6=j wi + o(kJ−2
T−1)

)

= lim
kT−1→∞

(

kJ−1
T−1

∑

j pjwj + o(kJ−1
T−1)

kJ−1
T−1 + kJ−2

T−1

∑

j pj
∑

i 6=j wi + o(kJ−2
T−1)

)

= lim
kT−1→∞

(

∑

j pjwj + o(1)

1 + o(1)

)

=
∑

j

pjwj

= ET−1wT

so that the lemma says that

lim
kT−1→∞

(

∏

j(kT−1 + wj)
∑J

j=1 pj
∏

i 6=j(kT−1 + wi)
− kT−1 − ET−1wT

)

= 0

Letting −δ(kT−1) denote the argument of the above limit, we combine with (35) to get

β(xT−1 − kT−1) = kT−1 + ET−1wT − δ(kT−1)

By the existence and uniqueness proposition, there is a unique period T − 1 savings function

k(T−1) which solves the household problem in this period. Hence we may define

ǫ(1)(x1,LT−1,FT−1) := δ
(

k(1)(x1,LT−1,FT−1)
)

and rearrange the above equation into the desired form

k(T−1)(xT−1,LT−1,FT−1) =
1

1 + β

(

βxT−1 − ET−1wT + ǫ(1)(x1,LT−1,FT−1)
)

We can calculate the behavior of the nonlinear error at the domain endpoints identically to the
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two period CRRA case above. Precisely, taking limits at the borrowing constraint,

kT−1(LT−1,FT−1) =
1

1 + β

(

βkT−1(LT−1,FT−1)− ET−1wT

+ lim
xT−1→kT−1(LT−1,FT−1)

ǫ(T−1)(xT−1,LT−1,FT−1)

)

which we solve for

lim
xT−1→kT−1(LT−1,FT−1)

ǫ(T−1)(xT−1,LT−1,FT−1) = ET−1wT + kT−1(LT−1,FT−1)

We also have

lim
xT−1→∞

ǫ(T−1)(xT−1,LT−1,FT−1) = lim
xT−1→∞

δ
(

k(T−1)(xT−1,LT−1,FT−1)
)

= 0

since k(T−1)(xT−1) → ∞ as xT−1 → ∞ (by the existence and uniqueness proposition) and δ → 0

as its argument increases to ∞.

To establish that ǫ(T−1) is decreasing in resources, we once again observe that

∂ǫ(T−1)

∂xT−1
=

∂δ

∂kT−1

∂k(T−1)

∂xT−1

has the same sign as ∂δ/∂kT−1. Next we observe that the definition of δ(kT−1) satisfies





J
∑

j=1

pj
kT−1 + wj





−1

= kT−1 + ET−1wT − δ(kT−1)

It therefore suffices to show that the derivative of the left side of the above equality with respect

to kT−1 is larger than unity. Calculating this derivative, it suffices to show that





J
∑

j=1

pj
kT−1 + wj





−2



J
∑

j=1

pj
(kT−1 + wj)2



 > 1

Rearranging, this is equivalent to the bound

J
∑

j=1

pj
kT−1 + wj

<





J
∑

j=1

pj
(kT−1 + wj)2





1/2

That this inequality is true is a consequence of the fact that the L1 norm on the left is dominated

by the L2 norm on the right (which, again, follows from Jensen’s inequality).
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To prove convexity, we once again observe that the linear-plus-error structure implies that

∂2k(T−1)

∂x2T−1

=
∂2ǫ(T−1)

∂x2T−1

so that, exactly as in the two period CRRA case, it suffices to show that δ is convex. Letting

h(kT−1) :=

J
∑

j=1

pj
kT−1 + wj

g(kT−1) := 1/h(kT−1)

and repeating the derivative calculations in that case, we see that it suffices to show that

2

(

∂h

∂kT−1

)2

− h(kT−1)
∂2h

∂k2T−1

< 0

To do so, we calculate

∂h

∂kT−1
= −

J
∑

j=1

pj
(kT−1 + wj)2

∂2h

∂k2T−1

= 2
J
∑

j=1

pj
(kT−1 + wj)3

so it suffices to show that





J
∑

j=1

pj
(kT−1 +wj)2





2

−





J
∑

j=1

pj
kT−1 + wj









J
∑

j=1

pj
(kT−1 + wj)3



 < 0

which is equivalent to





J
∑

j=1

pj
(kT−1 + wj)2





2

<





J
∑

j=1

pj
kT−1 + wj









J
∑

j=1

pj
(kT−1 + wj)3





This inequality is once again true by the Cauchy-Schwartz inequality, and this establishes our base

case for the induction.

Inductive Step. Suppose now that the theorem is proved for the savings function in period t+1,

where 1 < t ≤ T − 1. For a given state (xt,Lt,Ft) of resources and predictive probabilities at time

t, we suppose that there are J time t+ 1 states which are assigned positive predictive probability,

and we let

{(ℓj , Rj ,Wj) : j = 1, ..., J}
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denote the possible time t + 1 endowment and price outcomes. Note that both J and the set in

the above line may change depending on which period t we are focused on - we suppress these

dependencies for simplicity of notation. We denote the associated predictive probabilities by pj .

Moreover, we let wj = Wjℓj/(1 − δ +Rj).

The inductive step will, naturally, involve what we already know about the time t + 1 savings

function and its nonlinear error term. For simplicity, we will suppress the dependence of these

functions on predictive distributions in the argument.

Having established these notational conventions the time t Euler equation can be written as

1

xt − kt
= β





J
∑

j=1

pj

kt + wj −
1

1−δ+Rj
kt+1





For optimality, time t + 1 savings must be given by the time t + 1 savings function, and by the

inductive hypothesis we have

1

1− δ +Rj
k(t+1)

(

(1− δ +Rj)kt +Wjℓj

)

=
β + ...+ βT−t−1

1 + β + ...+ βT−t−1
(kt + wj)−

1

1 + β + ...+ βT−t−1
Et+1

(

T
∑

s=t+2

Wsℓs
∏s

r=t+2(1− δ +Rr)

)

+ǫ(t+1)
(

(1− δ +Rj)kt +Wjℓj

)

so that the denominators on the right side of the Euler equation take the form

1

1 + β + ...+ βT−t−1
kt +

1

1 + β + ...+ βT−t−1

(

wj + Et+1

(

T
∑

s=t+2

Wsℓs
∏s

r=t+2(1− δ +Rr)

))

−ǫ(t+1)
(

(1− δ +Rj)kt +Wjℓj

)

In order to simplify the algebraic steps to follow, we let

Aj ≡ A :=
1

1 + β + ...+ βT−t−1

Bj :=
1

1 + β + ...+ βT−t−1

(

wj + Et+1

(

T
∑

s=t+2

Wsℓs
∏s

r=t+2(1− δ +Rr)

))

Cj(kt) := Bj − ǫ(t+1)
(

(1− δ +Rj)kt +Wjℓj

)

In this notation, the Euler equation becomes

1

xt − kt
= β





J
∑

j=1

pj
Akt + Cj(kt)




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We now proceed much as in the terminal case, by writing this Euler equation as

β(xt − kt) =

∏J
j=1(Akt + Cj(kt))

∑J
j=1 pj

∏

i 6=j(Akt + Ci(kt))

In order to apply Lemma 1, we now compute

lim
kt→∞

(

∏J
j=1(Akt + Cj(kt))

∑J
j=1 pj

∏

i 6=j(Akt + Ci(kt))
−Akt

)

We may rewrite the argument here as a single fraction. To do so, we first note that

lim
kt→∞

Cj(kt)

kt
= lim

kt→∞





Bj

kt
−

ǫ(t+1)
(

(1 − δ +Rj)kt +Wjℓj

)

kt



 = 0

so that Cj(kt) = o(kt). After some cancellation, then this single fraction can be written as

AJ−1kJ−1
t

∑

j Cj(kt) + o(kJ−1)−AJ−1kJ−1
t

∑J
j=1 pj

∑

i 6=j Ci(kt) + o(kJ−1)
∑J

j=1 pj
∏

i 6=j(Akt + Ci(kt))

=
AJ−1kJ−1

t

∑

j pjCj(kt) + o(kJ−1)

AJ−1kJ−1
t + o(kJ−1)

=

∑

j pjCj(kt) + o(1)

1 + o(1)

−→
∑

j

pjCj(kt) = EtCt+1(kt) as kt → ∞

Noting that

EtCt+1(kt) = Et
1

1 + β + ...+ βT−t−1

(

wt+1 + Et+1

(

T
∑

s=t+2

Wsℓs
∏s

r=t+2(1− δ +Rr)

))

− Etǫ
(t+1)

(

(1− δ +Rt+1)kt +Wt+1ℓt+1

)

=
1

1 + β + ...+ βT−t−1
Et

(

T
∑

s=t+1

Wsℓs
∏s

r=t+1(1− δ +Rr)

)

+ o(1)

Lemma 1 tells us that

lim
kt→∞



β





J
∑

j=1

pj
Akt + Cj(kt)



−Akt −
1

1 + β + ...+ βT−t−1
Et

(

T
∑

s=t+1

Wsℓs
∏s

r=t+1(1− δ +Rr)

)



 = 0

Letting −δ(kt) denote the argument of this limit, it follows that we can rewrite the time t Euler
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equation as

β(xt − kt) = Akt +
1

1 + β + ...+ βT−t−1
Et

(

T
∑

s=t+1

Wsℓs
∏s

r=t+1(1− δ +Rr)

)

− δ(kt)

with limkt→∞ δ(kt) = 0. Recalling the definition of A and rearranging, this gives

kt =
β + ...+ βT−t

1 + β + ...+ βT−t
xt −

1

1 + β + ...+ βT−t
Et

(

T
∑

s=t+1

Wsℓs
∏s

r=t+1(1− δ +Rr)

)

+ δ(kt)

As in previous arguments, we define

ǫ(t)(xt,Lt,Ft) := δ
(

k(t)(xt,Lt,Ft)
)

which gives us the desired form of the savings function.

The limits of the nonlinear error follow as usual: the limit at the borrowing constraint from

rearranging the identity

kt(Lt,Ft) =
β + ...+ βT−t

1 + β + ...+ βT−t
kt(Lt,Ft)−

1

1 + β + ...+ βT−t
Et

(

T
∑

s=t+1

Wsℓs
∏s

r=t+1(1− δ +Rr)

)

+ lim
xt→kt(Lt,Ft)

ǫ(t)(xt,Lt,Ft)

and the limit at ∞ from the definition of ǫ(t) above, the behavior of k(t) at ∞, and the definition

of δ.

By a similar argument to previous cases, monotonicity of the error term will follow from showing

that the derivative of





J
∑

j=1

pj
Akt + Cj(kt)





−1

with respect to kt is larger than A.





J
∑

j=1

pj
Akt + Cj(kt)





−2



J
∑

j=1

pj(A+
∂Cj

∂kt
)

(Akt + Cj(kt))2



 > A

Noting that

∂Cj

∂kt
= −(1− δ +Rj)

∂ǫ(t+1)

∂xt+1
> 0
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we have





J
∑

j=1

pj
Akt + Cj(kt)





−2



J
∑

j=1

pj(A+
∂Cj

∂kt
)

(Akt + Cj(kt))2



 >





J
∑

j=1

pj
Akt + Cj(kt)





−2



J
∑

j=1

pjA

(Akt + Cj(kt))2





so it is sufficient to show that





J
∑

j=1

pj
Akt + Cj(kt)





−2



J
∑

j=1

pjA

(Akt + Cj(kt))2



 ≥ A

which is implied by showing





J
∑

j=1

pj
Akt + Cj(kt)





−2



J
∑

j=1

pj
(Akt + Cj(kt))2



 ≥ 1

Rearranging, we get

J
∑

j=1

pj
Akt + Cj(kt)

≤





J
∑

j=1

pj
(Akt + Cj(kt))2





1/2

which is true by the norm argument given in the base case.

To prove convexity, we once again observe that the linear-plus-error structure implies that

∂2k(t)

∂x2t
=

∂2ǫ(t)

∂x2t

so that, exactly as in previous instances, it suffices to show that δ is convex. Letting

h(kt) :=
J
∑

j=1

pj
Akt + Cj(kt)

g(kt) := 1/h(kt)

we can do the familiar calculation from previous cases to conclude that it suffices to demonstrate

2

(

∂h

∂kT−1

)2

< h(kT−1)
∂2h

∂k2T−1

(36)
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To show this we calculate

∂h

∂kt
= −

J
∑

j=1

pj(A+
∂Cj

∂kt
)

(Akt + Cj(kt))2

∂2h

∂k2t
= 2

J
∑

j=1

pj(A+
∂Cj

∂kt
)2

(Akt + Cj(kt))3
−

J
∑

j=1

pj
∂2Cj

∂k2t

(Akt + Cj(kt))2

Since ǫ(t+1) is strictly convex in resources, it follows that the second sum here is positive. Conse-

quently, it’s contribution is to make the right side of (36) larger, and hence to complete the proof

we must only show that





J
∑

j=1

pj(A+
∂Cj

∂kt
)

(Akt + Cj(kt))2





2

≤





J
∑

j=1

pj
Akt + Cj(kt)









J
∑

j=1

pj(A+
∂Cj

∂kt
)2

(Akt + Cj(kt))3





This inequality is yet again a consequence of the Cauchy-Schwartz inequality, proving convexity.

This closes the induction and completes the proof.

The main theorem in its full generality adds the additional technical complication that future

aggregates appear nonlinearly in the effective discount factor, leading to additional bookkeeping.

Theorem 4: Main Theorem, σ 6= 1. Make the sequence of recursive definitions

MT = (1− δ +RT )
1−σ

QT−1 = (βET−1MT )
1/σ

Mt = (1− δ +Rt)
1−σ(1 +Qt+1)

σ, t = 2, ..., T

Qt−1 = [βEt−1Mt]
1/σ , t = 2, ..., T

The savings functions k(t)(xt,Lt,Ft), t = 1, ..., T which solve the dynamic programming problems

(6) with can be written in the form

k(t)(xt,Lt,Ft) =
Qt

1 +Qt
xt −

1

1 +Qt
Et

(

T
∑

s=t+1

(

s
∏

r=t+1

Mr

Er−1Mr

)

Wsℓs
∏s

r=t+1(1− δ +Rr)

)

+ ǫ(t)(xt,Lt,Ft)

where the nonlinear error term ǫ(t) is strictly decreasing, convex, and satisfies

lim
xt→kt

ǫ(t)(xt,Lt,Ft) =
1

1 +Qt

[

Et

(

T
∑

s=t+1

(

s
∏

r=t+1

Mr

Er−1Mr

)

Wsℓs
∏s

r=t+1(1− δ +Rr)

)

+ kt

]
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and

lim
xt→∞

ǫ(t)(xt,Lt,Ft) = 0

Proof. The proof is again by induction, beginning with the period T − 1 savings function.

Base Case (T-1): We begin by writing out the expected value of the terminal Euler equation (8).

We continue to use the notation established in the log case: for a given state (xT−1,LT−1,FT−1)

of resources and predictive probabilities at time T − 1 we let

{(ℓj , Rj ,Wj) : j = 1, ..., J}

denote the possible time T endowment and price outcomes which are assigned positive predictive

probability. We denote the associated predictive probabilities by pj. Moreover, we let wj =

Wjℓj/(1− δ +Rj). We also introduce the notation

Dj =
1

(1− δ +Rj)1−σ

The terminal Euler equation (8) can be written as

1

(xT−1 − kT−1)σ
= β





J
∑

j=1

pj
Dj(kT−1 +wj)σ





= β

(

∑J
j=1 pj

∏

i 6=j Di(kT−1 + wi)
σ

∏

j Dj(kT−1 + wj)σ

)

Taking the reciprocal and then taking σth roots, this gives

(

β
∏

j Dj

)1/σ

(xT−1 − kT−1) =

∏

j(kT−1 +wj)
(

∑J
j=1 pj

∏

i 6=j Di(kT−1 + wi)σ
)1/σ

Some algebra in the numerator and denominator gives

β(xT−1 − kT−1) =
kJT−1 + kJ−1

T−1

∑

j wj + o(kJ−1
T−1)

kJ−1
T−1

(

∑

j pj
∏

i 6=j Di(1 +
wi

kT−1
)σ
)1/σ

55



Chipeniuk, Katz & Walker: Aggregation

To apply Lemma 1 on the right hand side, we compute

lim
kT−1→∞







kJT−1 + kJ−1
T−1

∑

j wj + o(kJ−1
T−1)

kJ−1
T−1

(

∑

j pj
∏

i 6=j Di(1 +
wi

kT−1
)σ
)1/σ

−
kT−1

(

∑

j pj
∏

i 6=j Di

)1/σ







= lim
kT−1→∞









kJT−1

[

1− 1

(
∑

j pj
∏

i6=j Di)
1/σ

(

∑

j pj
∏

i 6=j Di(1 +
wi

kT−1
)σ
)1/σ

]

+ kJ−1
T−1

∑

j wj + o(kJ−1
T−1)

kJ−1
T−1

(

∑

j pj
∏

i 6=j Di(1 +
wi

kT−1
)σ
)1/σ









Considering this as the limit of three separate fractions (one for each term in the numerator), we

see that the third converges to 0 and the second converges to

∑

j wj
(

∑

j pj
∏

i 6=j Di

)1/σ

We must therefore calculate the limit of the fraction corresponding to the first term; this simplifies

to

lim
kT−1→∞









kT−1

[

1− 1

(
∑

j pj
∏

i6=j Di)
1/σ

(

∑

j pj
∏

i 6=j Di(1 +
wi

kT−1
)σ
)1/σ

]

(

∑

j pj
∏

i 6=j Di(1 +
wi

kT−1
)σ
)1/σ









The denominator has limit





∑

j

pj
∏

i 6=j

Di





1/σ

(37)

so we need only compute the limit of numerator, which we rewrite as











[

1− 1

(
∑

j pj
∏

i6=j Di)
1/σ

(

∑

j pj

[

∏

i 6=j Di

] (

1 +
∑

i6=j wi

kT−1
+ o(1/kT−1)

)σ)1/σ
]

1/kT−1











Both numerator and denominator tend to zero here as kT−1 increases without bound, so that we

may apply l’Hospital’s rule to compute the limit. Taking derivatives, we therefore wish to compute
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the limit of

k2T−1

1
(

∑

j pj
∏

i 6=j Di

)1/σ





∑

j

pj





∏

i 6=j

Di



 (1 + o(1))σ





1
σ
−1

×





∑

j

pj





∏

i 6=j

Di





(

1 +

∑

i 6=j wi

kT−1
+ o(1/kT−1)

)σ−1
(

−

∑

i 6=j wi

k2T−1

+ o(1/k2T−1)

)





=
1

(

∑

j pj
∏

i 6=j Di

)1/σ





∑

j

pj





∏

i 6=j

Di



 (1 + o(1))σ





1
σ
−1

×





∑

j

pj





∏

i 6=j

Di



 (1 + o(1))σ−1



−
∑

i 6=j

wi + o(1)









After some thought, one sees that the limit of the last expression as kT−1 → ∞ is

−
∑

j pj

[

∏

i 6=j Di

]

∑

i 6=j wi
(

∑

j pj
∏

i 6=j Di

)

Combining this with (37), we now get

lim
kT−1→∞







kJT−1 + kJ−1
T−1

∑

j wj + o(kJ−1
T−1)

kJ−1
T−1

(

∑

j pj
∏

i 6=j Di(1 +
wi

kT−1
)σ
)1/σ

−
kT−1

(

∑

j pj
∏

i 6=j Di

)1/σ







=

∑

j wj
(

∑

j pj
∏

i 6=j Di

)1/σ
−

∑

j pj

[

∏

i 6=j Di

]

∑

i 6=j wi

(

∑

j pj
∏

i 6=j Di

)1+1/σ

=

∑

j pj

[

∏

i 6=j Di

]

wj

(

∑

j pj
∏

i 6=j Di

)1+1/σ

=
1

(

∑

j pj
∏

i 6=j Di

)1/σ

∑

j

pj

(

∏

i 6=j Di
∑

k pk
∏

l 6=k Dl

)

wj

Now Lemma 1 implies that the limit as kT−1 → ∞ of

−δ(kT−1) :=

∏

j(kT−1 + wj)
(

∑J
j=1 pj

∏

i 6=j Di(kT−1 + wi)σ
)1/σ

−
kT−1

(

∑

j pj
∏

i 6=j Di

)1/σ

−
1

(

∑

j pj
∏

i 6=j Di

)1/σ

∑

j

pj

(

∏

i 6=j Di
∑

k pk
∏

l 6=k Dl

)

wj
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vanishes. It now follows from the terminal Euler equation that we can write

(

β
∏

j Dj

)1/σ

(xT−1 − kT−1) =
kT−1

(

∑

j pj
∏

i 6=j Di

)1/σ

+
1

(

∑

j pj
∏

i 6=j Di

)1/σ

∑

j

pj

(

∏

i 6=j Di
∑

k pk
∏

l 6=k Dl

)

wj − δ(kT−1)

with limkT−1→∞ δ(kT−1) = 0. Rearranging slightly, we get



β
∑

j

pj/Dj





1/σ

(xT−1 − kT−1) = kT−1 +
∑

j

pj

(

∏

i 6=j Di
∑

k pk
∏

l 6=k Dl

)

wj − δ(kT−1)

Noting that



β
∑

j

pj/Dj





1/σ

= QT−1

∏

i 6=j Di
∑

k pk
∏

l 6=k Dl
=

1/Dj
∑

k pk/Dk
=

Mj

ET−1MT

and solving for kT−1 gives

kT−1 =
1

1 +QT−1



QT−1xT−1 −
∑

j

pj

(

∏

i 6=j Di
∑

k pk
∏

l 6=k Dl

)

wj + δ(kT−1)





By the existence and uniqueness proposition, there is a unique period T −1 savings function k(T−1)

which solves the household problem in this period. Hence we may define

ǫ(T−1)(xT−1,LT−1,FT−1) := δ
(

k(T−1)(xT−1,LT−1,FT−1)
)

so that we obtain the desired form

k(T−1)(xT−1,LT−1,FT−1) =
1

1 +QT−1

(

QT−1xT−1 −
∑

j

pj

(

∏

i 6=j Di
∑

k pk
∏

l 6=k Dl

)

wj

+ ǫ(T−1)(x1,LT−1,FT−1)

)

As in other cases, the limit of the savings function at the borrowing constraint is determined
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from solving

kT−1(LT−1,FT−1) =
1

1 +QT−1

(

QT−1kT−1(LT−1,FT−1)−
∑

j

pj

(

∏

i 6=j Di
∑

k pk
∏

l 6=k Dl

)

wj

+ lim
xT−1→kT−1(LT−1,FT−1)

ǫ(T−1)(xT−1,LT−1,FT−1)

)

We also have

lim
xT−1→∞

ǫ(T−1)(xT−1,LT−1,FT−1) = lim
xT−1→∞

δ
(

k(T−1)(xT−1,LT−1,FT−1)
)

= 0

since k(T−1)(xT−1) → ∞ as xT−1 → ∞ (by the existence and uniqueness proposition) and δ → 0

as its argument increases to ∞.

To establish that ǫ(T−1) is decreasing in resources, we once again observe that

∂ǫ(T−1)

∂xT−1
=

∂δ

∂kT−1

∂k(T−1)

∂xT−1

has the same sign as ∂δ/∂kT−1. Next we observe that the definition of δ(kT−1) satisfies





J
∑

j=1

pj
Dj(kT−1 + wj)σ





−1/σ

= kT−1 + ET−1wT − δ(kT−1)

It therefore suffices to show that the derivative of the left side of the above equality with respect

to kT−1 is larger than unity. Calculating this derivative, it suffices to show that





J
∑

j=1

pj
Dj(kT−1 + wj)σ





− 1
σ
−1



J
∑

j=1

pj
Dj(kT−1 + wj)σ+1



 > 1

Rearranging, this is equivalent to the bound





J
∑

j=1

pj
Dj(kT−1 + wj)σ





1/σ

<





J
∑

j=1

pj
Dj(kT−1 + wj)σ+1





1
σ+1

That this inequality is true is a consequence of the fact that Lσ norms are increasing in σ, once

again following from Jensen’s inequality.

To prove convexity, we once again observe that the linear-plus-error structure implies that

∂2k(T−1)

∂x2T−1

=
∂2ǫ(T−1)

∂x2T−1
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so that, exactly as in the two period CRRA case, it suffices to show that δ is convex. Letting

h(kT−1) :=
J
∑

j=1

pj
Dj(kT−1 + wj)σ

g(kT−1) := 1/h(kT−1)

and repeating the derivative calculations in that case, we see that it suffices to show that

(

1

σ
+ 1

)(

∂h

∂kT−1

)2

− h(kT−1)
∂2h

∂k2T−1

< 0

To do we calculate

∂h

∂kT−1
= −σ

J
∑

j=1

pj
Dj(kT−1 + wj)σ+1

∂2h

∂k2T−1

= σ(σ + 1)

J
∑

j=1

pj
Dj(kT−1 + wj)σ+2

so it suffices to show that





J
∑

j=1

pj
Dj(kT−1 + wj)σ+1





2

−





J
∑

j=1

pj
Dj(kT−1 + wj)σ









J
∑

j=1

pj
Dj(kT−1 +wj)σ+2



 < 0

which is equivalent to





J
∑

j=1

pj
Dj(kT−1 +wj)σ+1





2

<





J
∑

j=1

pj
Dj(kT−1 +wj)σ









J
∑

j=1

pj
Dj(kT−1 + wj)σ+2





This inequality is once again true by the Cauchy-Schwartz inequality, and this establishes our base

case for the induction.

Inductive Step. Suppose now that the theorem is proved for the savings function in period t+1,

where 1 < t ≤ T − 1. For a given state (xt,Lt,Ft) of resources and predictive probabilities at time

t, we suppose that there are J time t+ 1 states which are assigned positive predictive probability,

and we let

{(ℓj , Rj ,Wj) : j = 1, ..., J}

denote the possible time t + 1 endowment and price outcomes. Note that both J and the set in

the above line may change depending on which period t we are focused on - we suppress these

dependencies for simplicity of notation. We denote the associated predictive probabilities by pj .

Moreover, we let wj = Wjℓj/(1 − δ +Rj) and Dj =
1

(1−δ+Rj )1−σ = 1/Mj .
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The inductive step will involve what we already know about the time t+1 savings function and

its nonlinear error term. For simplicity, we once again suppress the dependence of these functions

on predictive distributions in the argument.

Having established these notational conventions the time t Euler equation can be written as

1

(xt − kt)σ
= β





J
∑

j=1

pj

Dj

(

kt + wj −
1

1−δ+Rj
kt+1

)σ





For optimality, time t + 1 savings must be given by the time t + 1 savings function, and by the

inductive hypothesis we have

1

1− δ +Rj
k(t+1)

(

(1− δ +Rj)kt +Wjℓj

)

=
Qj

1 +Qj
(kt + wj)−

1

1 +Qj
Et+1

(

T
∑

s=t+2

(

s
∏

r=t+2

Mr

Er−1Mr

)

Wsℓs
∏s

r=t+2(1− δ +Rr)

)

+
1

1− δ +Rj
ǫ(t+1)

(

(1− δ +Rj)kt +Wjℓj

)

so that the bracketed expressions in the denominators on the right side of the Euler equation take

the form

1

1 +Qj
kt +

1

1 +Qj

(

wj + Et+1

(

T
∑

s=t+2

(

s
∏

r=t+2

Mr

Er−1Mr

)

Wsℓs
∏s

r=t+2(1− δ +Rr)

))

−ǫ(t+1)
(

(1− δ +Rj)kt +Wjℓj

)

In order to simplify the algebraic steps to follow, we let

Aj :=
1

1 +Qj

Bj :=
1

1 +Qj

(

wj + Et+1

(

T
∑

s=t+2

(

s
∏

r=t+2

Mr

Er−1Mr

)

Wsℓs
∏s

r=t+2(1− δ +Rr)

))

Cj(kt) := Bj −
ǫ(t+1)

(

(1− δ +Rj)kt +Wjℓj

)

1− δ +Rj

In this notation, the Euler equation becomes

1

(xt − kt)σ
= β





J
∑

j=1

pj
Dj(Ajkt + Cj(kt))σ




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We now proceed much as in the terminal case, by writing this Euler equation as

(

β
∏

j Dj

)1/σ

(xt − kt) =

∏

j(Ajkt + Cj(kt))
(

∑J
j=1 pj

∏

i 6=j Di(Aikt + Ci(kt))σ
)1/σ

In order to apply Lemma 1, we now compute

lim
kt→∞







∏J
j=1(Ajkt + Cj(kt))

(

∑J
j=1 pj

∏

i 6=j Di(Aikt + Ci(kt))σ
)1/σ

−

∏

j Aj
(

∑

j pj
∏

i 6=j DiA
σ
i

)1/σ
kt







We may rewrite the argument here as a single fraction. To do so, we first note that

lim
kt→∞

Cj(kt)

kt
= lim

kt→∞





Bj

kt
−

ǫ(t+1)
(

(1 − δ +Rj)kt +Wjℓj

)

kt



 = 0

so that Cj(kt) = o(kt). We therefore want to compute the limit as kt → ∞ of

kJt

(

∏

j Aj −
∏

j Aj

(
∑

j pj

∏
i6=j DiAσ

i )
1/σ

(

∑J
j=1 pj

∏

i6=j Di(Ai +
Ci(kt)

kt
)σ
)1/σ

)

+ kJ−1
t

∑

j Cj(kt)
∏

i6=j Aj + o(kJ−1
t )

(

∑J
j=1 pj

∏

i6=j Di(Aikt + Ci(kt))σ
)1/σ

=

kJt

(

∏

j Aj −
∏

j Aj

(
∑

j pj

∏
i6=j DiAσ

i )
1/σ

(

∑J
j=1 pj

∏

i6=j Di(Ai +
Ci(kt)

kt
)σ
)1/σ

)

+ kJ−1
t

∑

j Cj(kt)
∏

i6=j Aj + o(kJ−1
t )

kJ−1
t

(

∑J
j=1 pj

∏

i6=j Di(Ai +
Ci(kt)

kt
)σ
)1/σ

=

kt

(

∏

j Aj −
∏

j Aj

(
∑

j pj

∏
i6=j DiAσ

i )
1/σ

(

∑J
j=1 pj

∏

i6=j Di(Ai +
Ci(kt)

kt
)σ
)1/σ

)

+
∑

j Cj(kt)
∏

i6=j Aj + o(1)

(

∑J
j=1 pj

∏

i6=j Di(Ai + o(1))σ
)1/σ

Splitting this into three separate fractions and taking limits termwise, the limit of the third term

vanishes and that of the second term is

lim
kt→∞

∑

j Cj(kt)
∏

i 6=j Aj
(

∑J
j=1 pj

∏

i 6=j Di(Ai + o(1))σ
)1/σ

=

∑

j Bj
∏

i 6=j Aj
(

∑

j pj
∏

i 6=j DiA
σ
i

)1/σ

The limit of the first term requires more attention once again. The denominator approaches





∑

j

pj
∏

i 6=j

DiA
σ
i





1/σ
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while we can use l’Hospital’s rule to calculate that of the numerator upon writing it as

∏

j Aj −
∏

j Aj

(
∑

j pj
∏

i6=j DiAσ
i )

1/σ

(

∑J
j=1 pj

∏

i 6=j Di(Ai +
Ci(kt)
kt

)σ
)1/σ

1/kt

and observing that both numerator and denominator tend to 0 as kt tends to ∞. Taking the

necessary derivatives, we must compute the limit of

k2t

∏

j Aj
(

∑

j pj
∏

i 6=j DiAσ
i

)1/σ

1

σ





J
∑

j=1

pj
∏

i 6=j

Di

(

Ai +
Ci(kt)

kt

)σ




1
σ
−1

×
[

J
∑

j=1

σpj





∏

i 6=j

DiA
σ
i







1 +
∑

i 6=j

Ci(kt)

Aikt
+ o(1/kt)





σ−1



∑

i 6=j

[

∂Ci/∂kt
Aikt

−
Ci(kt)

Aik2t

]

+ o(1/k2t )





]

=

∏

j Aj
(

∑

j pj
∏

i 6=j DiA
σ
i

)1/σ





J
∑

j=1

pj
∏

i 6=j

Di (Ai + o(1))σ





1
σ
−1

×
[

J
∑

j=1

pj





∏

i 6=j

DiA
σ
i



 (1 + o(1))σ−1





∑

i 6=j

[

kt
Ai

∂Ci

∂kt
−

Ci(kt)

Ai

]

+ o(1)





]

Taking the limit kt → ∞ of the last line, we end up with

∏

j Aj
∑

j pj
∏

i 6=j DiAσ
i

[

J
∑

j=1

pj





∏

i 6=j

DiA
σ
i



 lim
kt→∞





∑

i 6=j

[

kt
Ai

∂Ci

∂kt
−

Ci(kt)

Ai

]





]

(38)

To calculate the remaining limit, we observe from the following short, technical argument that

lim
kt→∞

kt
∂Ci

∂kt
= 0

To see this, first observe that we have

∂Ci

∂kt
kt =

∂ǫ(t+1)
(

(1− δ +Ri)kt + wi

)

∂xt+1
(1− δ +Ri)kt

=
(

(1− δ +Ri)kt + wi

)∂ǫ(t+1)
(

(1− δ +Ri)kt + wi

)

∂xt+1

− wi
∂ǫ(t+1)

(

(1− δ +Ri)kt + wi

)

∂xt+1

Making the change of variables xt+1 = (1− δ +Ri)kt + wi, this can be written as

= xt+1
∂ǫ(t+1)

∂xt+1
−wi

∂ǫ(t+1)

∂xt+1
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Then, since ǫ(t+1) → 0 as xt+1 → ∞, the same is true for its derivative, and the second term in

the last line above vanishes in this limit. Since xt+1 → ∞ and kt → ∞ it therefore suffices to show

that the first term also vanishes in this limit.

Recalling that ǫt+1 is convex in resources, it must be the case that

|ǫ(t+1)(x)− ǫ(t+1)(x0)| ≥

∣

∣

∣

∣

∣

∂ǫ(t+1)(x0)

∂xt+1
(x− x0)

∣

∣

∣

∣

∣

for any x0, x ∈ (kt+1,∞). In particular, we can take x = 2x0 giving

|ǫ(t+1)(2x0)− ǫ(t+1)(x0)| ≥

∣

∣

∣

∣

∣

∂ǫ(t+1)(x0)

∂xt+1
(x0)

∣

∣

∣

∣

∣

Taking the limit as x0 → ∞, the left side vanishes, while the right side remains greater than or

equal to zero. It follows from the squeeze theorem that

∣

∣

∣

∣

∣

∂ǫ(t+1)(x0)

∂xt+1
x0

∣

∣

∣

∣

∣

→ 0

as needed.

Recalling now the definition of Ci(kt) and using the above calculation, we arrive at the closed

form expression for (38)

−

∏

j Aj
∑

j pj
∏

i 6=j DiAσ
i

[

J
∑

j=1

pj





∏

i 6=j

DiA
σ
i





∑

i 6=j

Bi

Ai

]

Combining this with the previously calculated limits, we obtain

lim
kt→∞







∏J
j=1(Ajkt + Cj(kt))

(

∑J
j=1 pj

∏

i 6=j Di(Aikt + Ci(kt))σ
)1/σ

−

∏

j Aj
(

∑

j pj
∏

i 6=j DiA
σ
i

)1/σ
kt







=

∑

j Bj
∏

i 6=j Aj
(

∑

j pj
∏

i 6=j DiAσ
i

)1/σ
−

∏

j Aj

[

∑J
j=1 pj

(

∏

i 6=j DiA
σ
i

)

Bi
Ai

]

(

∑

j pj
∏

i 6=j DiAσ
i

)(

∑

j pj
∏

i 6=j DiAσ
i

)1/σ

Combining the fractions and simplifying, we get

(

∑

j Bj
∏

i 6=j Aj

)(

∑

j pj
∏

i 6=j DiA
σ
i

)

−
∏

j Aj

[

∑J
j=1 pj

(

∏

i 6=j DiA
σ
i

)

∑

i 6=j
Bi
Ai

]

(

∑

j pj
∏

i 6=j DiA
σ
i

)1+ 1
σ
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Some thought allows us to rearrange this as





∏

j

Aj





∑

j pj

(

∏

i 6=j DiA
σ
i

)

Bj

Aj

(

∑

j pj
∏

i 6=j DiA
σ
i

)1+ 1
σ

Lemma 1 now tells us that

−δ(kt) :=

∏J
j=1(Ajkt +Cj(kt))

(

∑J
j=1 pj

∏

i 6=j Di(Aikt + Ci(kt))σ
)1/σ

−

∏

j Aj
(

∑

j pj
∏

i 6=j DiA
σ
i

)1/σ
kt

−





∏

j

Aj





∑

j pj

(

∏

i 6=j DiA
σ
i

)

Bj

Aj

(

∑

j pj
∏

i 6=j DiA
σ
i

)1+ 1
σ

vanishes in the limit kt → ∞. It follows that we can rewrite the time t Euler equation as

(

β
∏

j Dj

)1/σ

(xt − kt) =

∏

j Aj
(

∑

j pj
∏

i 6=j DiA
σ
i

)1/σ
kt +

(

∏

j Aj

)

∑

j pj

(

∏

i 6=j DiA
σ
i

)

Bj

Aj

(

∑

j pj
∏

i 6=j DiAσ
i

)1+ 1
σ

− δ(kt)

with limkt→∞ δ(kt) = 0. Rearranging somewhat, we get

xt − kt =
1

(

β
∑

j
pj

DjAσ
j

)1/σ
kt +

1
(

β
∑

j
pj

DjAσ
j

)1/σ

∑

j

pj

(

∏

i 6=j DiA
σ
i

∑

l pl
∏

m6=l DmAσ
m

)

Bj

Aj
− δ(kt)

=
1

(

β
∑

j
pj

DjAσ
j

)1/σ
kt +

1
(

β
∑

j
pj

DjAσ
j

)1/σ

∑

j

pj

(

1/(DjA
σ
j )

∑

l pl/(DlA
σ
l )

)

Bj

Aj
− δ(kt)

or

kt =
1

1 +
(

β
∑

j
pj

DjAσ
j

)1/σ









β
∑

j

pj
DjA

σ
j





1/σ

xt −
∑

j

pj

(

1/(DjA
σ
j )

∑

l pl/(DlA
σ
l )

)

Bj

Aj
+ δ(kt)







Recalling our choice of notation Dj and Aj , we see that this can now be written as

kt =
1

1 +Qt

(

Qtxt − Et

(

Mt+1

EtMt+1

)

Bt+1

At+1
+ δ(kt)

)

We note that the definitions of Bj and Aj give

Bj

Aj
=

(

wj + Et+1

(

T
∑

s=t+2

(

s
∏

r=t+2

Mr

Er−1Mr

)

Wsℓs
∏s

r=t+2(1− δ +Rr)

))
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so this further reduces to

kt =
1

1 +Qt

(

Qtxt − Et

T
∑

s=t+1

(

s
∏

r=t+1

Mr

Er−1Mr

)

Wsℓs
∏s

r=t+1(1− δ +Rr)
+ δ(kt)

)

As in previous arguments, we define

ǫ(t)(xt,Lt,Ft) := δ
(

k(t)(xt,Lt,Ft)
)

which gives us the desired form of the savings function.

The limits of the nonlinear error follow as usual: the limit at the borrowing constraint from

rearranging the identity

kt(Lt,Ft) =
1

1 +Qt

(

Qtkt(Lt,Ft)− Et

T
∑

s=t+1

(

s
∏

r=t+1

Mr

Er−1Mr

)

Wsℓs
∏s

r=t+1(1− δ +Rr)

+ lim
xt→kt(Lt,Ft)

ǫ(t)(xt,Lt,Ft)

)

and the limit at ∞ from the definition of ǫ(t) above, the behavior of k(t) at ∞, and the definition

of δ.

By a similar argument to previous cases, monotonicity of the error term will follow from showing

that the derivative of





J
∑

j=1

pj
Dj(Ajkt + Cj(kt))σ





−1/σ

with respect to kt is larger than

1
(

∑

j pj/(DjA
σ
j )
)1/σ

Taking the derivative, this amounts to showing that





J
∑

j=1

pj
Dj(Ajkt + Cj(kt))σ





− 1
σ
−1



J
∑

j=1

pj(Aj +
∂Cj

∂kt
)

Dj(Ajkt + Cj(kt))σ+1



 >
1

(

∑

j pj/(DjAσ
j )
)1/σ

Noting that

∂Cj

∂kt
= −(1− δ +Rj)

∂ǫ(t+1)

∂xt+1
> 0
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it is sufficient to show that





J
∑

j=1

pj
Dj(Ajkt + Cj(kt))σ





1
σ
+1

≤





J
∑

j=1

pjAj

Dj(Ajkt + Cj(kt))σ+1









∑

j

pj/(DjA
σ
j )





1/σ

which is implied by showing

J
∑

j=1

pj
DjAσ

j (kt + Cj(kt)/Aj)σ
≤





J
∑

j=1

pj
DjAσ

j (kt + Cj(kt)/Aj)σ+1





σ
σ+1





∑

j

pj/(DjA
σ
j )





1
1+σ

This last inequality is true by Hölder’s inequality.

To prove convexity, we once again observe that the linear-plus-error structure implies that

∂2k(t)

∂x2t
=

∂2ǫ(t)

∂x2t

so that, exactly as in previous instances, it suffices to show that δ is convex. Letting

h(kt) :=
J
∑

j=1

pj
Dj(Ajkt + Cj(kt))σ

g(kt) := h(kt)
−1/σ

we can do the familiar calculation from previous cases to conclude that it suffices to demonstrate

that

(

1

σ
+ 1

)(

∂h

∂kT−1

)2

< h(kT−1)
∂2h

∂k2T−1

(39)

To show this we calculate

∂h

∂kt
= −σ

J
∑

j=1

pj(Aj +
∂Cj

∂kt
)

Dj(Ajkt + Cj(kt))σ+1

∂2h

∂k2t
= σ(σ + 1)

J
∑

j=1

pj(Aj +
∂Cj

∂kt
)2

Dj(Ajkt + Cj(kt))σ+2
− σ

J
∑

j=1

pj
∂2Cj

∂k2t

Dj(Ajkt + Cj(kt))σ+1

Since ǫ(t+1) is strictly convex in resources, it follows that the second sum here is strictly positive.

Consequently, it’s contribution is to make the right side of (39) larger, and hence to complete the

proof we must only show that





J
∑

j=1

pj(Aj +
∂Cj

∂kt
)

Dj(Ajkt + Cj(kt))σ+1





2

≤





J
∑

j=1

pj
Dj(Ajkt + Cj(kt))σ









J
∑

j=1

pj(Aj +
∂Cj

∂kt
)2

Dj(Ajkt + Cj(kt))σ+2




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This inequality is yet again a consequence of the Cauchy-Schwartz inequality, proving convexity.

This closes the induction and completes the proof.

7 Appendix B: Description of Algorithm

Time is discrete and infinite. In each period, a measure 1/T of T -period lived households is born,

so that at any given time there is a unit measure of living individuals. Households behave according

to the theory described in Section 3. Equilibrium for this economy will now involve a distribution

Λs(k, ℓ, t) at time s of households across capital k, employment ℓ, and age t = 1, ..., T . For each time

s, we initialize the new cohort by fixing Λs(0, 0, 1) = us/T and Λs(0, 1, 1) = (1−us)/T , where us is

the average unemployment rate corresponding to the aggregate state at time s. Households born

into unemployment are given a small unemployment benefit (µ), which is paid by taxing the wage of

current workers. This overlapping-generations, life-cycle framework has several advantages. First,

as T → ∞, it replicates well-known environments (Aiyagari (1994), Krusell and Smith (1998)).

Second, for T = 2, we are able to study an exact equilibrium; that is, one that is not subject to

the curse of dimensionality. This facilitates a precise evaluation of common numerical approaches.

Third, it is a natural environment for breaking aggregation as households representing different

generations have different marginal propensities to save, as documented above. Finally, an infinite

horizon economy permits the study of simulation methods and steady state analysis. Thus, we can

use the KS algorithm described above to solve the model. Suppose the current aggregate state is

good z = g; young, employed households solve:21

max
kt

ln(WtLtℓ
t
t(1− τt)− kt)

+βπgg

(

πgg11
πgg

ln(W
(g)
t+1L

(g)
t+1ℓ

t
t+1(1− τ

(g)
t+1) +R

(g)
t+1kt) +

πgg10
πgg

ln(µ +R
(g)
t+1kt)

)

+βπgb

(

πgb11
πgb

ln(W
(b)
t+1L

(b)
t+1ℓ

t
t+1(1− τ

(b)
t+1) +R

(b)
t+1kt) +

πgb10
πgb

ln(µ+R
(b)
t+1kt)

)

(40)

Young, unemployed households solve:

max
kt

ln(µ − kt)

+βπgg

(

πgg01
πgg

ln(W
(g)
t+1L

(g)
t+1ℓ

t
t+1(1− τ

(g)
t+1) +R

(g)
t+1kt) +

πgg00
πgg

ln(µ +R
(g)
t+1kt)

)

+βπgb

(

πgb01
πgb

ln(W
(b)
t+1L

(b)
t+1ℓ

t
t+1(1− τ

(b)
t+1) +R

(b)
t+1kt) +

πgb00
πgb

ln(µ+R
(b)
t+1kt)

)

(41)

The current old consume according to, ct−1
t = R

(g)
t kt−1 + W

(g)
t L

(g)
t ℓt−1

t (1 − τt) if employed and

ct−1
t = R

(g)
t kt−1 + µ if unemployed.

The auctioneer must only provide W
(s)
t+1, R

(s)
t+1 for each state s = {g, b} along with the corre-

21We adopt the notation that superscripts denote date of birth. For example, those born at t, get employment
share ℓtt+1 at date t+ 1. Aggregate states are denoted as superscripts in parenthesis.
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sponding aggregate state probabilities to the current young. The following algorithm describes an

“exact auctioneer.”

Algorithm 1: Exact Auctioneer

1) Draw a series of aggregate shocks Zt, t = 1...T for the simulation. Fix an initial distribution
of old households at t = 1 by placing a mass u(Z1)/2 at a value k0,1 and a mass (1−u(Z1))/2
at a value k1,1. Define initial aggregate capital

K1 =
1

2
(u(Z1)k0,1 + (1− u(Z1))k1,1); (42)

2) Do the following for each t = 1, ..., T − 1:

a) Guess a value Kguess for Kt+1.

b) Given Kt and the guessed value for Kt+1, calculate Rt, Wt, Rt+1, Wt+1.

c) Given the prices from the previous step, solve the household’s problem for the savings
k0,t+1 and k1,t+1 of unemployed and employed (respectively) young households at time
t.

d) Let

Kimp =
1

2
(u(Zt)k0,t+1 + (1− u(Zt))k1,t+1) (43)

If Kimp is equal to Kguess within tolerance, let Kt+1 = Kguess, increase t and return to
2.a. Otherwise, update the guess and return to 2.b.

7.1 The KS Auctioneer

1. Guess an initial savings function, aggregate law of motion, and cross-sectional distribution of
households. Generate a long sequence of total factor productivity shocks once and for all.

2. Solve the household’s problem by Euler equation iteration, beginning from the initial savings
function and using the aggregate law of motion to forecast one-period-forward prices. Iterate
until the savings functions converge up to some tolerance.

3. Use the savings function from Step 3 to simulate the cross-sectional distribution for the
sequence of TFP shocks generated in Step 1 via the procedure of Young (2010).

4. Use the time series of distributional statistics generated in Step 3 to update the aggregate
law of motion, for example by ordinary least squares regression (in the case of a law which is
linear in coefficients).

5. Repeat steps 2-4 until the aggregate law of motion converges within some tolerance.

6. Test for equilibrium. For example, one can compute the R squared fit of the regression in
Step 4, or use the procedure of den Haan (2010).
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We follow Maliar, Maliar, and Valli (2010) in our grid choices: with deterministic steady state

capital given by

Kss =

(

1
β − (1− δ)

α

)− 1
1−α

the idiosyncratic grid points are distributed on the interval [0, 25Kss] according to the polynomial

rule

kj =

(

j

100

)7

25 ·Kss, j = 1, ..., 100

while four aggregate grids are distributed linearly on the interval [0.8Kss, 1.3Kss]. Parameters were

chosen in line with the computational literature: β = 0.99, α = 0.36, δ = 0.025, and σ = 1.

Productivity shocks take values in the set {0.99, 1.01} and efficiency shocks take values in the set

{0, 1.111}, and these shocks follow the joint Markov process of Krusell and Smith (1998). We do

not include taxes or unemployment insurance for this exercise.22

22The algorithm was implemented in the programming language Julia and calculations performed on an MSI GT70
2QD Laptop with an Intel Core i7-4710MQ processor and 16 GB of RAM. Interpolation in step 2 uses cubic splines
via the Julia package Dierckx, which simply acts as a wrapper for the FORTRAN package of the same name. The
model solved in 43.22 seconds, with 34 iterations on the aggregate law of motion and 1909 iterations on the Euler
equation for the initial aggregate law of motion loop.

70


	Introduction
	Connection to the Literature

	The Economic Environment
	Households
	Firms 
	Uncertainty
	The Auctioneer
	Formal Treatment of a Household's Problem

	Aggregation Theorems 
	Two-Periods, No Uncertainty
	Two-Periods, Uncertainty
	T-Periods, Uncertainty
	Aggregation with Nominal Assets

	Implications
	Steady-State Auctioneer and a Paper-Pencil Assessment of Aggregation
	Assessing the Finite-Moment Auctioneer
	Interpreting Regression Output
	Assessment of Step 6: Testing for Equilibrium

	Improving the Finite-Moment Auctioneer

	Concluding Thoughts
	Appendix A (Not for Publication)
	Appendix B: Description of Algorithm
	The KS Auctioneer


