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ABSTRACT

Under the assumption of incomplete information, idiosyncratic shocks may not dissipate in the
aggregate. An econometrician who incorrectly imposes complete information and applies the law
of large numbers may be susceptible to information aggregation bias. Tests of aggregate economic
theory will be misspecified even though tests of the same theory at the micro level deliver the cor-
rect inference. A testable implication of information aggregation bias is “Samuelson’s Dictum" or the
idea that stock prices can simultaneously display “micro efficiency" and “macro inefficiency;" an idea
accredited to Paul Samuelson. Using firm-level data from the Center for Research in Security Prices
(CRSP) we present empirical evidence consistent with Samuelson’s dictum. Specifically, we conduct
two standard tests of the linear present value model of stock prices: a regression of future dividend
changes on the dividend-price ratio, and a test for excess volatility. We show that the dividend price
ratio forecasts the future growth in dividends much more accurately at the firm level as predicted by
the present value model, and that excess volatility can be rejected for most firms. When the same
firms are aggregated into equal-weighted or cap-weighted portfolios, the estimated coefficients typ-
ically deviate from the present value model and “excess" volatility is observed; this is especially true
for aggregates (e.g., S&P 500) that are used in most asset pricing studies. To investigate the source
of our empirical findings, we propose a theory of aggregation bias based on incomplete information
and segmented markets. Traders specializing in individual stocks conflate idiosyncratic and aggre-
gate shocks to dividends. To an econometrician using aggregate data, these assumptions generate a
rejection of the present value model even though individual traders are efficiently using their avail-
able information.
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1 INTRODUCTION

Early tests of the Friedman (1957)–Hall (1978) permanent income model were clearly rejected when ex-

amined with aggregate U.S. data—changes in aggregate consumption were highly correlated with lagged

income changes. However, the model’s orthogonality conditions could not be rejected when tested with

individual data [Deaton (1992)]. Goodfriend (1992) and Pischke (1995) proposed “information aggrega-

tion bias" as a possible explanation for the discrepancy. They showed how incomplete information fac-

ing individual households could bias the econometrician’s full-information aggregate tests, while leav-

ing the household-level econometrics correctly specified. The linear present value model of consump-

tion was a good depiction of economic behavior and yet an econometrician—imposing a representative

agent / complete information setup—would find substantial violations of the theory with aggregate data.

This “information aggregation bias" result has taken on renewed significance given the recent inter-

est in mapping microeconomic shocks into macroeconomic outcomes under incomplete information

[see Angeletos and Lian (2016b) and Section 1.1]. Similar to Goodfriend and Pischke, many recent papers

feature models in which idiosyncratic shocks do not succumb to the law of large numbers but instead

complicate the aggregation of economic time series. We contribute to this line of work by studying the

aggregate implications of incomplete information within the context of an asset pricing model. We be-

lieve this setting has the following advantages relative to the more familiar macroeconomic framework.

While significant strides have been made over the last three decades in data collection and analysis of

household- and firm-level data, testing basic economic theory at both the micro and macro level simul-

taneously remains nontrivial [Meghir and Pistaferri (2011)]. The richness of stock price data, on the other

hand, allows us to show definitively how aggregation alters time series properties. In this sense, we fol-

low Cochrane and Hansen (1992) in arguing that “security market data are among the most sensitive and

hence attractive proving grounds for models of the aggregate economy." Secondly, the theory we use to

test our hypotheses is well established as it relies on the long history of testing the efficient markets hy-

pothesis (EMH). While we are not interested in asking whether a stock price is “efficient," we can apply

the econometric techniques for testing the EMH to conduct our thought experiments.1

In the asset pricing context, testing for the aggregation bias of Goodfriend and Pischke is akin to test-

ing what Jung and Shiller (2005) dub Samuelson’s Dictum, which articulates Paul Samuelson’s belief that

market efficiency applies to individual firms (micro efficiency) but is vitiated when stock prices are aggre-

gated to form indexes like the S&P 500 (macro inefficiency).2 In Section 2, we conduct two familiar tests

1Our application of West (1988b) is a good example of how we rely on the econometrics developed to test the EMH in our
analysis. West’s test of excess volatility does not rely on stationarity of the time series, a constraint that is crucial to relax. Flavin
(1983) argued the procedures used to measure volatility may in fact overstate it due to non-stationarity. These overstatements
were shown not to be sufficient to account for S&P 500 data. Thus, several authors [e.g., Marsh and Merton (1986); Kleidon
(1986)] extended this notion by suggesting that the trend-stationarity assumption made about dividends in the original studies
was questionable, and that upon adopting the alternative (difference-stationarity), prices did not appear excessively volatile.
However, “second-generation" volatility tests [e.g. Campbell and Shiller (1987) West (1988b)], which do not rely on stationarity,
also find evidence for excess volatility in aggregate data.

2In a private letter to John Campbell and Robert Shiller, Paul Samuelson wrote: “Modern markets show considerable micro
efficiency (for the reason that the minority who spot aberrations from micro efficiency can make money from those occurrences
and, in doing so, they tend to wipe out any persistent inefficiencies). In no contradiction to the previous sentence, I had
hypothesized considerable macro inefficiency, in the sense of long waves in the time series of aggregate indexes of security
prices below and above various definitions of fundamental values,” Jung and Shiller (2005).
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of the present value model of stock prices: a regression of future dividend changes on the dividend-price

ratio, and a test for excess volatility. Both tests confirm Samuelson’s Dictum in the follow sense. Using

data on all firms that paid a consistent dividend in the Center for Research in Security Prices (CRSP), we

show that for individual firms the dividend price ratio does a better job of forecasting the future growth

in dividends and that the deviation in prices relative to dividends is mostly in line with the discounted

present value model. For a significant number of firms, the model cannot be rejected at the individual

firm level. When the same firms are aggregated into equal-weighted or cap-weighted portfolios, the esti-

mated coefficients are no longer consistent with the present value model. Running the same regressions

with data from aggregate indexes does not even yield coefficients of the correct sign. Thus, applying

the same econometric methodology to aggregate data delivers sound rejections of a model that cannot

rejected at the individual firm level.

We then conduct the “second-generation" volatility test of West (1988b), which is based on an in-

equality of the variance of the innovation in the expected present value of dividends. The theory states

that this variance should be smaller when conditioning on market information (current and past prices

and dividends) relative to a subset of that information. We again find evidence that stock prices of indi-

vidual firms are not excessively volatile. Nearly 80% of firms in our sample do not exhibit excess volatility

at a 1% significance level. However, portfolios of these same firms almost always exhibit excess volatil-

ity, and aggregate indexes commonly used in asset pricing studies exhibit excess volatility on a grander

scale. As with our regression results, the more one aggregates, the more significant the rejection of the

linear present value model.

To reconcile our findings, we propose a theory of aggregation bias based on incomplete information

and segmented markets in Section 3 that is a generalization of Goodfriend (1992) and Pischke (1995). We

assume firm dividends are subject to two types of shocks—idiosyncratic and aggregate—and that traders

cannot perfectly distinguish between them. If markets are segmented in the sense that traders specialize

in trading individual firms and incomplete information persists, aggregate prices and dividends differ

from their complete information counterpart. To the econometrician using aggregate data, such differ-

ences would materialize as a rejection of the present value model, even though individual traders are

pricing stocks using this exact model and are efficiently using all available information. Conversely, tests

of individual firms do not suffer from the same bias as the econometric tests properly account for the

incomplete information. Monte Carlo investigations show that this theory is a plausible explanation of

the results of Section 2.

1.1 CONNECTION TO LITERATURE The insights of Goodfriend (1992) Pischke (1995) were put on more

solid footing by Reis (2006), Luo (2008) and Thornton (2014). Goodfriend (1992) hypothesized that indi-

viduals processed aggregate information with a one-period lag and Reis (2006) showed how this “inat-

tentiveness" implied that the sluggishness in aggregate consumption was due to the aggregation step,

which proved an important distinguishing feature relative to other modeling assumptions (e.g., habit

formation in utility). Pischke (1995) went one step further arguing that when agents faced idiosyncratic

and aggregate shocks, ignoring contemporaneous aggregate data may be the optimal choice for house-

holds. Specifically referencing Pischke’s information structure, Luo (2008) conjectured that, if rational

2
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inattention could be modeled endogenously, “it would be optimal for them to devote low attention to

monitoring the aggregate component because the aggregate component is less important for individu-

als’ optimal decisions." Thornton (2014) provides an explicit characterization of the econometrics under-

lying the aggregation problem and connects the theory to Granger’s (1980) aggregation of long-memory

processes. He shows how incomplete information can cause aggregate measures to display substantial

persistence even when the micro data follow random walks. Our contribution to this literature is in argu-

ing that these insights and techniques (appropriately modified) can be applied to asset pricing data. As

mentioned in the introduction, asset pricing data does not suffer from the same challenges of aggregate

and household-level income and consumption; our panel of observations is significantly more than any

test of the permanent income hypothesis. Our main result—that informational frictions appear larger

at the macro level—is also related to Mackowiak and Wiederholt (2009) where agents rationally choose

to pay more attention to idiosyncratic fundamentals, with Angeletos and Lian (2016a) and Angeletos

and Huo (2018) where higher-order uncertainty is more pronounced at the aggregate level. However, we

contribute to this literature by showing how this result can hold theoretically even when not deviating

from rational expectations. Our theoretical interpretation relies simply on a signal extraction problem at

the individual trader level, which propagates into aggregate dynamics. The econometrician and private

agent are acting optimally, and yet Samuelson’s Dictum manifests.

Stylized facts distinguishing individual stock price behavior from that of portfolios or indices are

now well established and contained in many popular textbooks [e.g., Campbell et al. (1997), Campbell

(2017)]. Manifestations of Samuelson’s Dictum can be found in Campbell (1991), Vuolteenaho (2002),

Cohen et al. (2003) and Cohen et al. (2009), who employ vector autoregression analysis along the lines of

Campbell and Shiller (1987) and Campbell and Shiller (1988b) to document the extent to which variation

in individual firms’ stock prices are driven by idiosyncratic versus aggregate factors. Our econometric

approach is different from the papers cited above3 because we are explicitly testing for aggregation bias,

which is not of interest in these papers. Jung and Shiller (2005) is an important exception but we view

the evidence provided therein as suggestive, at best. Section 2.2 extends their results along several di-

mensions. First, we analyze much more data by including all firms that paid a dividend between 1926

and 2018. Our sample size is several orders of magnitude larger than theirs. Second, we conduct sev-

eral additional tests like West’s (1988b) test of excess volatility, panel regressions, numerous and various

forms of aggregation. Additionally, we offer a theoretical explanation for our empirical findings. Startz

and Tsang (2014) is the only other empirical paper to test specifically for Samuelson’s Dictum. They use

a slightly different methodology and find that the result is contingent on investment horizon. While our

results also depend on horizon (e.g., Table 2), our findings are more robust.

Our theory in Section 3 relies on two assumptions to make information aggregation bias operable.

First, traders have incomplete information in that they cannot disentangle idiosyncratic from aggregate

shocks, similar to Pischke (1995). An econometrician—imposing complete information—will assume

3We rely on panel data methods and formal tests of the linear present value model. Our interest in how well the the model
fits the data for various levels of aggregation (e.g., Table 2) and how quickly aggregation changes the nature of these results (e.g.,
Figure 1) clearly distinguishes our empirical work from the papers cited above. Our theoretical explanation also differs from
this literature (see, Section 4)

3
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the idiosyncratic shocks “wash out" in the aggregation step and will attribute the idiosyncratic influence

to a rejection of the linear present value model. In this sense, our paper contributes to the broader liter-

ature on articulating the perils of assuming complete information, representative agent models and has

antecedents in Phelps (1983), Forni and Lippi (1999), Blundell and Stoker (2005), and Blanchard et al.

(2013), who show how incomplete information coupled with some form of heterogeneity can lead to in-

correct inference. The second assumption is market segmentation or that traders specialize in individual

stocks. A justification for this assumption is given by Glasserman and Mamaysky (2019), who show in a

model of portfolio choice that traders will endogenously specialize in either macro or micro information,

and derive conditions under which it takes more effort to acquire information about individual stocks

than market aggregates. This asymmetry provides the incentive for traders to specialize and acquire

micro-level information. Unlike Glasserman and Mamaysky (2019), we show how these assumptions

can generate time series that are consistent with our empirical findings of Section 2.

2 EMPIRICAL EVIDENCE

A testable implication of information aggregation bias is a change in the econometric inference as one

aggregates. We provide empirical evidence in favor of information aggregation bias by testing various

forms of the present value model at the individual firm and aggregate levels. Our tests begin with the

standard asset pricing equation

Pt = (1+ r )−1Et (Pt+1 +D t+1) (1)

Pt = Et

∞∑
j=1

(1+ r )− j D t+ j (2)

where r is the time-invariant discount rate,4 Pt is the real stock price at the end of year t , D t is the real

dividend paid throughout year t , and Et denotes the time t conditional expectation. The top equation is

the standard asset pricing equation in which the price today is equal to the discounted expected payout

(price plus dividend) tomorrow. Invoking a no-bubbles condition and the law of iterated expectations

yields (2). The online appendix shows that (2) can be written in dividend-price ratio form as

D t /Pt = r −Et g D
t (3)

g D
t ≡

∞∑
k=1

(∆D t+k /Pt )/(1+ r )k−1 (4)

where ∆D t = D t −D t−1. The dividend growth rate is expressed as the sum of discounted future dividend

changes for a $1 investment at t . That is, growth rates are computed relative to the price of the stock as

opposed to changes in D . This permits a continuous value for dividend growth even when no dividends

were paid.

4While our focus is on a constant discount rate specification, we acknowledge the importance of time-varying rates in ex-
plaining asset price behavior. Previous versions of the paper introduced a time-varying discount rate, which only reinforced
our results.
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Given that we do not observe an infinite amount of data, we cannot test (3)–(4) directly. We follow

Campbell and Shiller (1988a) in proxying for the future dividend growth g D
t by truncating the summation

after K years:

ĝ D
t =

K∑
k=1

(∆D t+k /Pt )/(1+ r )k−1 (5)

Rearranging (3) according to Et g D
t = r −D t /Pt yields a test of the linear model by running the following

regression,

ĝ D
t =α+β(D t /Pt )+ϵt (6)

If the present value model (3)–(4) is the correct model, the current dividend-price ratio should be nega-

tively correlated with the expected growth rate (β=−1), and the intercept term should coincide with the

discount rate (α= r ).

In order to understand the effects of aggregation, we follow Jung and Shiller (2005) and construct

portfolios by taking the cross-sectional average of the price-dividend ratios. We also control for market

size by constructing cap-weighted, cross-sectional averages. Specifically, we use the following dividend-

price averages,

(
D t /Pt

)= 1

I

I∑
i=1

(Di ,t

Pi ,t

)
,

(
D t /Pt

)
C AP =

I∑
i=1

ξi

(Di ,t

Pi ,t

)
(7)

where ξi denotes the market-capitalization weight assigned to firm i for time period t .5 In reporting

results, we refer to this cross-sectional average as “Equal Weight 2" and “Cap Weight 2", respectively.

Averaging price-dividend ratios as in (7), as opposed to averaging prices and dividends separately to

form the portfolio, could lead to a loss of information. Therefore in addition to the Jung-Shiller average

(7), we construct the cross-sectional averages separately for prices and dividends,

D t /Pt =
∑I

i=1 Di ,t∑I
i=1 Pi ,t

, (D t /Pt )C AP =
∑I

i=1 ξi Di ,t∑I
i=1 ξi Pi ,t

(8)

and refer to these averages as “Equal Weight 1" and “Cap Weight 1."

Campbell and Shiller (1998, 2001) tested various versions of (6) using Standard & Poor Composite

stock price dating back to 1871 and found the coefficient on (D t /Pt ) to be positive—a higher dividend-

price ratio counter-intuitively portends a higher expected growth rate. The result was interpreted as

“indicating that in the entire history of the US stock market, the dividend-price ratio has never predicted

dividend growth in accordance with the simple efficient markets theory." Jung and Shiller (2005) esti-

mated (6) assuming a constant discount rate, r̄ = 0.054 (annual average return over all firms and dates

in the sample), for each of the 49 individual stocks that survived the entire CRSP sample from the first

5The cap weights are calculated as follows: abs(PRC*SHROUT) where PRC: Price or Bid/Ask Average, SHROUT: Shares Outstand-
ing.

5
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Number of Firms (Firm Years)

Firm Age Non-Dividend Dividend Total

Discontinuous 612 (8,922) 394 (8,707) 1,006 (17,629)

Continuous 1-10 12,297 (58,121) 7,453 (40,965) 19,750 (99,086)
11-20 2,641 (37,739) 4,485 (65,973) 7,126 (103,712)
21-40 802 (20,847) 3,112 (87,200) 3,914 (108,047)
41-60 16 (752) 896 (43,764) 912 (44,516)
61-80 1 (69) 193 (13,223) 194 (13,292)
81-90 0 48 (4,154) 48 (4,154)
90+ 0 46 (4,266) 46 (4,266)

Total 16,369 (126,450) 16,627 (268,252) 32,996 (349,702)

Table 1: Total number of firms and firm-year observations in the CRSP dataset from 1926 to 2018 decom-
posed by age and dividend / non-dividend paying.

year dividends were recorded (1926) through 2001. They found that the average estimate for βwas of the

correct sign (negative) and significantly different from zero. The average β ranged from -0.499 (K = 25)

to -0.44 (K = 10). Aggregating the individual stocks using Equal Weight 2 given by (7) delivered a β range

of 0.336 (K = 10) to 0.697 (K = 25). These results led Jung and Shiller to conclude that “there is now sub-

stantial evidence supporting Samuelson’s Dictum where market inefficiency is defined as predictability

of future (excess) returns."6

2.1 DATA We test the present value model with stock and dividend data from the Center for Research

on Security Prices (CRSP). The data cover the period from January 1926 to December 2018. Firms are

grouped based on the continuity of stock price and dividend data. We label firms as discontinuous if

they temporarily leave the sample. If a firm has paid an ordinary dividend at any point in the sample,

we count them as a dividend-paying firm. We delete firm-month observations whose stock prices are

missing or whose dividends are negative for that month. We also delete firm-month observations whose

Cumulative Factor to Adjust Prices over a Date Range (cumfacpr) are missing or negative. As indicated

in Data Descriptions Guide (CRSP, 2010), in order to compare the stock prices across time, we divide

each series by cumfacpr. We only keep observations generated by ordinary dividends data, excluding

observations due to liquidation, acquisition, reorganization, and issuances.

Table 1 summarizes the number of firms, firm-year observations, and age of the firms in the CRSP

dataset. Of the 32,996 firms, roughly half of these firms have issued ordinary dividends (16,369). A small

percentage, 1,006 (3.05%), left the sample and reappeared at a later date. The dividend paying firms have

a more dispersed distribution in terms of firm age. A majority of dividend-paying firms have survived

more than 11 years, which is not true for the non-dividend paying firms. Table 1 shows the summary

statistics for the number of firm-year observations. There are 349,702 firm-year observations in total,

and 268,252 (76.7%) are dividend paying firms.

6We confirm the results of Jung and Shiller (2005) continue to hold with updated data through 2018. Assuming a constant
discount rate of 0.064, the average β for the individual firms that survived the entire sample (n = 46) ranged from -0.58 (K = 25)
to -0.42 (K = 10); while the coefficient on the equal-weighted portfolio given by (7) was positive and ranged from 0.33 (K = 20)
to 0.25 (K = 10).

6
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Forming the approximation (5) requires dividends K periods into the future. Therefore, the number

of observations is decreasing in K . We only use firms that have at least ten or more observations. For

example, in the case of K = 10, our data consists of firms with stock price and dividend data with more

than 20 annual observations. For K = 20, we require 30 annual observations, and so on. Our sample size

is vastly larger than previous studies. For example, Jung and Shiller (2005) only examined firms that had

price and dividend data available for their entire sample. This amounts to 47 firms or roughly 1% of our

sample when K = 10.

Following standard procedure in the asset pricing literature, we create the yearly series of stock prices

by selecting the last available observation for each firm and year combination. We divide the stock price

series by the corresponding year’s December Consumer Price Index (CPI) from the Bureau of Labor

Statistics to get the inflation-adjusted values. We create the real annual dividend series by summing

up 12 monthly adjusted dividends from January to December and dividing by that year’s December CPI.

The discount rate (0.054) is the average annual return over all firms and dates in the sample. All data are

available at http://www.econ.yale.edu/~shiller/data.htm

2.2 REGRESSION ANALYSIS We test Samuelson’s Dictum by estimating the linear present value model,

D t /Pt = r −Et g D
t , where g D

t ≈ ∑K
k=1(∆D t+k /Pt )/(1+ r )k−1 for nine different specifications and for four

truncation parameters, K = 10,20,30,50.7 Our specifications include balanced and unbalanced panels

for all dividend-paying firms in CRSP; portfolios of these firms formed by the weighting schemes dis-

cussed in the previous section; and the S&P 500 Index. For the individual firms, we estimate the follow-

ing panel regression, gi t =α+β(Di t /Pi t )+γi +ϵi ,t , for firm observations i = 1, · · · , I , annual observations

t = 1, · · · ,T , and where γi captures firm-specific effects.

Table 2 reports the results, organized by truncation parameter K . As mentioned above, our approach

permits continuous value for dividend growth even when no dividends are paid. As discussed in Jung

and Shiller (2005), zero-dividend observations are informative (e.g., many firms did not pay a dividend

during the Great Depression). However, as a check on the influence of zero-dividend observations, the

entry labeled “Unbal. (D > 0)" eliminates all firms that have more than 50% of annual dividend entries

equal to zero.8

For each K , the first three rows of Table 2 report the β estimate and 95% confidence interval (calcu-

lated using the Newey and West (1987) HAC estimator with data-dependent, Bartlett bandwidth 0.75T 1/3+
0.5) for the balanced panel (“Bal. Panel"), unbalanced panel (“Unbal. Panel"), and “Unbal. Panel (D >
0)." These entries constitute the test of Samuelson’s Dictum at the individual firm level. All estimates

for β in the first three rows are of the correct sign with the unbalanced panel very close to the hypothe-

sized theoretical value of minus one for smaller values of K . For K = 10, one cannot reject the two-sided

hypothesis H0 : β = −1 for the unbalanced panel, even at the 1% significance level. As K increases,

the number of observations are substantially reduced and the confidence intervals widen as a result.

7We set the interest rate to 0.054, which is the average return on assets in our sample. We also examined values for the
interest rate as low as 0.045 and as high as 0.064, with little to no change in our results.

8Increasing this value to 66% did not substantially alter results for small K . For K = 50, the β estimate falls to -0.66 with 95%
confidence interval [-0.80, -0.51].

7

http://www.econ.yale.edu/~shiller/data.htm


CHOI, RONDINA & WALKER: AGGREGATION BIAS AND SAMUELSON’S DICTUM

K=10 # obs. β 95% CI K=20 # obs. β 95% CI

Bal. Panel 3,154 −0.616 −0.805,−0.428 Bal. Panel 2,774 −0.778 −0.959,−0.598
Unbal. Panel 112,637 −0.996 −1.002,−0.990 Unbal. Panel 57,467 −0.864 −0.909,−0.818
Unbal. (D > 0) 92,253 −0.996 −1.002,−0.989 Unbal. (D > 0) 49,388 −0.835 −0.892,−0.778
Equal Weight 1 83 −1.516 −3.311, 0.280 Equal Weight 1 73 −1.034 −1.870,−0.198
Cap Weight 1 83 −0.370 −0.591,−0.149 Cap Weight 1 73 −0.332 −0.521,−0.144
Equal Weight 2 83 0.257 −0.043, 0.556 Equal Weight 2 73 0.400 0.063, 0.738
Cap Weight 2 83 0.018 −0.257, 0.292 Cap Weight 2 73 0.151 −0.370, 0.672
S&P 500 (1926) 83 0.023 −0.274, 0.320 S&P 500 (1926) 73 0.178 −0.258, 0.613
S&P 500 (1871) 138 0.036 −0.181, 0.253 S&P 500 (1871) 128 0.046 −0.197, 0.290

K=30 # obs. β 95% CI K=50 # obs. β 95% CI

Bal. Panel 2,394 −0.860 −1.005,−0.668 Bal. Panel 1,634 −0.757 −1.065,−0.448
Unbal. Panel 30,427 −0.804 −0.880,−0.728 Unbal. Panel 7,483 −0.749 −0.869,−0.629
Unbal. (D > 0) 27,418 −0.788 −0.874,−0.702 Unbal. (D > 0) 7,148 −0.736 −0.862,−0.610
Equal Weight 1 63 −0.771 −1.224,−0.318 Equal Weight 1 43 −0.610 −0.898,−0.323
Cap Weight 1 63 −0.228 −0.419,−0.038 Cap Weight 1 43 −0.321 −0.516,−0.127
Equal Weight 2 63 0.535 0.034, 0.910 Equal Weight 2 43 0.745 0.382, 1.108
Cap Weight 2 63 0.259 −0.258, 0.777 Cap Weight 2 43 0.119 −0.283, 0.520
S&P 500 (1926) 63 0.222 −0.219, 0.662 S&P 500 (1926) 43 0.205 −0.242, 0.652
S&P 500 (1871) 118 0.062 −0.226, 0.350 S&P 500 (1871) 98 0.102 −0.161, 0.364

Table 2: Regression Results. This table reports the results of the regression of future dividend growth on
current dividend-price ratio for individual firms and for several aggregate measures. Results are ordered
according to truncation parameter K with the first three rows representing individual-firm regressions
and the last six corresponding to aggregate measures. Standard errors are calculated using a Newey-West
HAC estimator with data-dependent, Bartlett bandwidth.

However, these results confirm that at the individual-firm level, the present value model with constant

discount rate is an adequate description of the data.

The remaining entries of Table 2 report the results for aggregate measures of prices and dividends.

Recall that “Equal Weight 1" and “Cap Weight 1" refer to the cross-sectional averages constructed sepa-

rately for prices and dividends (8), while “Equal Weight 2" and “Cap Weight 2" refer to the cross-sectional

average of the price-dividend ratio (7). These cross-sectional averages are constructed using the entire

unbalanced panel, as opposed to the balanced panel. Aggregating the balanced panel resulted in esti-

mates forβ that were further away from -1 relative to the unbalanced panel. We also report results for the

S&P 500 Index, examining both the same time horizon as our sample (1926) and the full sample which

dates back to 1871.

All aggregate measures lead to obvious rejections of the constant discount rate model. For many of

the aggregate measures, the estimated coefficient is positive. This is true for all values of K for the price-

dividend averages and nearly all of the S&P 500 samples. The aggregate measure with an estimated

coefficient that is closest to the theoretical counterpart of -1 is “Equal Weight 1", which is estimated to

be of the correct sign. However, it is not tightly estimated with relatively large 95% confidence intervals.

Moreover, the estimate for the S&P 500 Index is not even of the correct sign for any value of K . The present

value model for individual stock prices and dividends is more consistent using the disaggregated data,

while any form of aggregation leads to a rejection.

Our results are robust to several variations of the data. Rows 4–9 in Table 2 aggregate the entire

sample of firms. We also examined aggregates formed from subsets of these firms based upon longevity;

8
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β H0 :β=−1 H1 : β ̸= −1 α

K # obs. Mean Std 1% 5% 10% Mean Std

10 3,858 -0.642 0.651 33.9% 45.9% 53.3% 0.028 0.026
20 1,936 -0.515 0.932 37.3% 48.7% 55.7% 0.037 0.040
30 1,075 -0.317 1.127 41.8% 55.3% 62.2% 0.042 0.047
50 277 -0.326 0.977 41.9% 52.7% 59.2% 0.057 0.056

Table 3: Individual Firm Regression Results. This table reports the results of the regression of future
dividend growth on current dividend-price ratio as given by (6) for individual firms. Standard errors
are calculated using a Newey-West HAC estimator with data-dependent, Bartlett bandwidth with 5%
winsorization.

we employed “optimal" portfolio weights constructed from mean-variance optimality conditions; we

eliminated outliers caused by the Great Depression and other recessions. Slicing the data along these

dimensions did not substantially alter our findings.9

Table 3 estimates equation (6), g D
t =α+β(D t /Pt )+ϵt , individually for each firm and then aggregates

the results, as opposed to the panel regression of Table 2. In order to mitigate the influence of outliers,

we apply a 5% winsorization.10 While not as close to the theoretical value of -1 displayed by the panel

regression estimates, well over half of all firms cannot reject the null hypothesis H0 : β = −1 at the 10%

significant level. Similar to previous findings, the estimates are less consistent with the theory and more

dispersed as the horizon K increases. Here we also report the estimates for the intercept term, α. While

the average roughly doubles from 0.028 (K = 10) to 0.057 (K = 50), the estimates are in-line with the

average 10-year yield on US Treasuries over this time period, 0.0362.

To further investigate the phenomena, Figure 1 shows how quickly aggregation leads to a deviation of

the regression coefficient away from -1. In this figure, 36 firms who survived the entire sample from 1926

through 2018 are ordered from most consistent with the theory (β closest to -1) to least consistent. We

then form sequential, equal-weighted portfolios across the firms following (7) and run the regression (6)

for K = 10 (solid line with dashed 95% confidence intervals). The individual estimates for the firms are

plotted using dot-whiskers, which represents theβ estimate and 95% confidence interval. The horizontal

axis indicates the number of firms combined to form the equal-weighted portfolio. As the figure shows,

the aggregate estimate turns positive after 13 firms, while the individual firm regressions do not turn

positive until the 33rd firm. A portfolio of the 18 most consistent firms has a β that is of the wrong sign

and a statistically significant positive value, despite the fact that nearly all of these firms cannot reject

the null H0 : β=−1 at the 10% significant level when estimated individually. This analysis suggests that

aggregation leads to a quick and decisive deviation from the constant discount rate present value model,

even when the individual regressions are not substantially deviating from the theory.

2.3 EXCESS VOLATILITY Shiller (2002) has made the case that excess volatility is the one anomaly that

is most troubling from the perspective of the efficient markets hypothesis:

9Additional results available upon request.
10A majority of these outliers are firms that left the sample after only a short period of time and hence, may not be indicative of

a “representative firm." Moreover, these firms almost never appear in the S&P 500 or other aggregates used to test asset pricing
models, and their influence on aggregate results in Table 2 are negligible given the firm-year weighting.
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Figure 1: Aggregation Bias. The figure reports the estimates for β in regression (6) with K = 10 and 95%
confidence interval in dashed lines, for equal-weighted portfolios as in (7) of an expanding number of
firms. The dot-whiskers plot is the regression coefficient for the individual firm with 95% confidence
intervals. Firms are sequentially added to the portfolio from the most to the least consistent with the
theory, i.e. based on the point estimate ofβ being closest to -1 when regression (6) is run at the individual
firm level. The number of firms in the portfolio is indicated on the horizontal axis.

“The anomaly represented by the notion of excess volatility seems to be much more trou-

bling for efficient markets theory than some other financial anomalies, such as the January

effect or the day-of-the-week effect. The volatility anomaly is much deeper than those rep-

resented by price stickiness or tatonnement or even by exchange-rate overshooting. The

evidence regarding excess volatility seems, to some observers at least, to imply that changes

in prices occur for no fundamental reason at all, that they occur because of such things as

’sunspots’ or ’animal spirits’ or just mass psychology.”

Not only is excess volatility theoretically damaging, it is pervasive in financial data. First introduced

by Shiller (1981) and LeRoy and Porter (1981), there is now over four decades of documentation sup-

porting excess volatility in stocks, bonds, foreign exchange and other financial markets. It is also worth

noting that nearly all of the stock market studies focus exclusively on aggregate indices when testing for

excess volatility (e.g. S&P 500, Dow Jones Industrial).

To develop some intuition for this anomaly, we start again with the constant discount rate asset pric-
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ing model of (1),

Pt = θEt [Pt+1 +D t+1] (9)

D t = A(L)vt (10)

where the discount factor θ = (1+ r )−1 is assumed to be constant, E is the expectation operator, Pt is

the price of the individual stock, D t the dividend, and A(L) is a square-summable polynomial in the lag

operator L with v ∼ N (0,σ2
v ). The Wold representation theorem permits the use of such a general speci-

fication for the exogenous dividend process (10). We use this generalization to show that the results are

not unique to the assumed exogenous process for dividends. Solving for the unique rational expectations

equilibrium delivers the well-known Hansen-Sargent (1980) optimal prediction formula (see Online Ap-

pendix):

Pt = P (L)vt =
(θA(L)

L−θ − θA(θ)

L−θ
)
vt (11)

=
∞∑

j=1
θ j D t+ j −

(
θA(θ)

L−θ
)

vt

= P⋆
t −P R

t (12)

The equilibrium price Pt can be decomposed into two components—the perfect foresight price P⋆
t and

a remainder term P R
t . The perfect foresight price is the price that would prevail if the agent knew past,

current, and future values of v . Because the information set of the agent only contains current and

past v ’s, P R
t represents a conditioning down term that is orthogonal to information known at t . This

orthogonality condition implies the following well-known inequality for the variance of the price:

var(P⋆
t ) > var(Pt ) (13)

The variance of the perfect foresight price is greater than the variance of the equilibrium (or observed)

price.

Much of the debate immediately following Shiller (1981) centered around the calculation of P⋆
t and

the appropriate way to test for excess volatility.11 A series of papers, including that of West (1988b),

corrected for the statistical and measurement issues and all concluded that excess volatility was a robust

feature of stock price data. We implement West (1988b) to test for excess volatility in individual firm

and aggregated data. The main idea of West’s approach is to test for excess volatility by constructing two

nested information sets It and Ht with It ⊃ Ht . Analogous to the calculation of (13), the present value

model implies that the variance of the innovation in the expected present discounted value (PVD) of

dividends when expectations are conditional on It is smaller than that of the innovation in the expected

PDV of dividends when expectations are taken with respect to Ht (i.e., var(P R
t |It ) < var(P R

t |Ht ) if Ht ⊂ It ).

Therefore any two nested information sets can be used to test for excess volatility.

11Flavin (1983) and Kleidon (1986) document that the perfect foresight calculations of Shiller lead to small sample bias in
tests of excess volatility.
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In what follows, we use the notation of and implementation strategy of West (1988b) and refer readers

to that paper for a full derivation of results discussed below. We construct nested information sets by

estimating the following bivariate system

Pt = θ(Pt+1 +D t+1)+ut+1 (14)

∆sD t+1 = µ+φ1∆
sD t +·· ·+φq∆

sD t−q+1 + vt+1 (15)

where Pt and D t are the stock price and dividend in real terms and s is the integrated order of the divi-

dend process. The variance of the innovation in the expected discounted present value conditional on

information set It can be estimated as θ̂−2σ̂2
u where σ̂2

u is an unbiased estimator for the second moment

of the residual in the regression (14). Thus, the innovation ut+1 contains the price history plus other

terms. We label this forecast error as V(It−1) ≡ E[Pt −Π(Pt |It−1)]2.

Conversely, using the Hansen and Sargent formula (11), an inferior information set assumes Ht con-

tains only the history of dividends and knowledge of the model structure. The variance of the one-step-

ahead forecast error is given by

V(Ht−1) ≡ E[Pt −Π(Pt |Ht−1)]2 = E[P (L)vt −L−1(P (L)−P (0))vt−1]2

= P (0)2σ2
v = A(θ)2σ2

v

= ((1− θ̂)s(1−
q∑
1
θ̂ j φ̂ j ))−2σ̂2

v (16)

The first equality of (16) follows from the Wiener-Kolmogorov optimal prediction formula. The final

equality comes from (11) and substituting in the stochastic process for the dividends (15). The σ̂2
v is

an unbiased estimator for the second moment of the residual in the regression (15), and therefore the

present value model can be tested based on the sign of the statistic E [Pt−Π(Pt |Ht−1)]2−E [Pt−Π(Pt |It−1)]2,

which we have established as

Υ=V(Ht−1)−V(It−1)

= ((1− θ̂)s(1−
q∑
1
θ̂ j φ̂ j ))−2σ̂2

v − θ̂−2σ̂2
u (17)

where the second equality provides an estimate of this statistic. A test of excess volatility is then H0 :

Υ ≥ 0. A negative value of Υ indicates that enlarging the information set leads to the perverse result of

an increase in the innovation variance. The volatility is then excessive relative to the theoretical model.

Following West, when Υ is negative, we also report

Υ̃=−100

(
V(Ht−1)−V(It−1)

V(It−1)

)
(18)

which gives a rough estimate of the percentage of the variance in the price process that is excessive.

West applied this method to test the present value model on S&P 500 data for 1871–1980 and the

Dow Jones index from 1928–1978 for a wide variety of q and s. After a battery of robustness checks, he
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Υ Υ̃ 1% 5% 10%

Unbalanced Panel (287 firms) 513.72 — 224 147 100
Balanced Panel (47 firms) 3,825.64 — 33 25 21
Equal Weight 1 (287 firms) -12.55 68.8
Cap Weight 1 (287 firms) -12.45 44.9
Equal Weight 1 (47 firms) -7.05 18.0
Cap Weight 1 (47 firms) 73.38
S&P 500 (1926) -25,291.15 91.6
S&P 500 (1871) -15,994.52 90.9

Table 4: Volatility Test Results. This table reports the statistic from equations (17) (Υ) and (18) (Υ̃). For
individual firms, we report the number out of the 287 and 47 firms that cannot reject the excess volatility
test H0 :Υ≥ 0 for various significance levels.

concluded that stock prices were too volatile to be the expected discounted value of dividends. Typical

values for Υ (Υ̃) were -230 (92.92) for S&P data and -21,545 (96.92) for Dow Jones data [Table II, pg. 51].

We update these results for aggregate indices and also apply the test at the individual firm level.

We use an unbalanced panel of 287 firms with more than 60 years of observations. For each firm, we

estimate the bivariate system (15) to obtain the corresponding statistics for formula (17). Equation (14)

is estimated by Hansen’s (1982) two-step, two-stage least squares, using current and lagged values of

dividends as instrumental variables. We use the augmented Dickey-Fuller (ADF) test for each dividend

series to determine s in the Equation (15). For each regression, we set the AR order based on the Hannan-

Quinn (1979) procedure. We estimate the variance-covariance matrix in accordance with West (1988b)

and use the delta method to get the variance of the statistic (17) and (18). Moreover, since Pt and D t

arguably have unit roots, standard distribution theory is applicable as shown in West (1988a).

The first two rows of Table 4 report the average West statistic (Υ) for the individual firms, while the

last three columns report the number of firms which cannot reject excess volatility (H0 : Υ ≥ 0) for 1%,

5%, and 10% significance levels. The remaining rows report the equal and cap weight average using the

cross-sectional average, D t /Pt , of both sets of individual firms in addition to the S&P 500 index for the

sample beginning in 1871 and 1926.

Consistent with the previous section, the excess volatility tests confirm Samuelson’s Dictum—stocks

appear excessively volatile only when aggregated. The average of the test statistic for the individual firms

is of the correct sign, and the null of a positive value cannot be rejected for a majority of the firms at

the 1% significance level. Conversely the statistic for every aggregated measure—with the exception of

the cap-weighted portfolio—is of the wrong sign and statistically different from zero, confirming excess

volatility. The S&P 500 index displays substantial excess volatility relative to the aggregate measures of

the individual firms. Table 4 reflects the findings of Table 2 with the present value model successfully

accounting for the dynamics of individual firms while failing to account for any aggregate of the individ-

ual firms. Similar to the regression analysis, the extent of aggregation plays an important role in excess

volatility. The present value model miserably fails to account for the dynamics of broad aggregate mea-
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sures such as the S&P 500 Index while failing much less spectacularly for portfolios of the individual

firms.

3 THEORY

We now propose a theory based on incomplete information and market segmentation that is able to

account for the empirical results of Section 2. Our focus is on explaining the difference in results between

firm-level data and aggregate measures of the same firm-level data. To that end, suppose there are I firms

indexed by i = 1,2, ..., I with stocks priced according to the linear present value model

Pi t = Et

∞∑
j=1

θ j Di t+ j (19)

where Pi t is the stock price of firm i , θ is the constant discount factor (θ = (1+ r )−1), and Di t is the

dividend of firm i . The firm-specific dividend process is driven by an aggregate shock (εt ) and an id-

iosyncratic shock (ηi t ) and is given by

Di t = at +ηi t (20)

at = ρat−1 +εt (21)

where εt ∼ N (0,σ2
ε), ηi t ∼ N (0,σ2

η), with εt and ηi t uncorrelated at all leads and lags. The aggregate shock

follows an AR(1) specification with autocorrelation coefficient |ρ| < 1.

3.1 COMPLETE INFORMATION Under complete information, traders are assumed to observe the entire

history of both the aggregate and idiosyncratic shocks, Ft = {εt ,ηi t ,εt−1,ηi t−1, ....}. The rational expec-

tations equilibrium price for firm i follows from the Hansen-Sargent optimal prediction formula (substi-

tuting (20) into (11)),

Pi t |Ft =
(

θρ

1−θρ
)

at (22)

Now consider the implications of forming the cross-sectional average, “Equal Weight 1", D t = (1/I )
∑I

i=1 Di t ,

Pt = (1/I )
∑I

i=1 Pi t . With a sufficiently large I , the law of large numbers is operational and the idiosyn-

cratic shock washes out of the average dividend, D t ≡ (1/I )
∑

i Di t ≈ at . Pricing such a dividend stream

according to the linear present value model would yield the rational expectations equilibrium,

Pt |Ft =
(

θρ

1−θρ
)

at = (1/I )
I∑

i=1
Pi t |Ft (23)

The last equality emphasizes that a trader pricing the aggregate dividend stream D t would deliver the

same stock price as the average of individual traders pricing each stock i independently. That is, we could

have market segmentation where individual traders specialize in specific stocks—an analogy we make

use of shortly—and, under the assumption of perfect information, aggregating the individual prices for

each firm i perfectly replicates the price of the aggregate index Pt . Thus under full information, the
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empirical tests of the present value model conducted in Section 2 would be accurate. A full-information

rational expectations equilibrium cannot explain Samuelson’s Dictum.

3.2 INCOMPLETE INFORMATION & SPECIALIZATION We now impose two assumptions, which we state

explicitly.

Assumption 1: Market Segmentation. We assume traders specialize in individual stocks. Trader i follows

firm i and only trades firm i ’s stock.

Assumption 2: Incomplete Information. Trader i has incomplete information in that her information set

consists of current and past dividends, Ii t = {Di t ,Di t−1, ....}.

Assumption 2 challenges the notion that traders can perfectly distinguish shocks that affect only indi-

vidual firms from shocks that impact the market more broadly. Assumption 1 challenges the standard

assumption that aggregate indices (e.g., S&P 500) are the actively traded commodity.12 These assump-

tions are stringent and are imposed in order to keep the algebra of the paper-and-pencil variety. Kasa et

al. (2014) and Rondina and Walker (2021) show how to allow for stock prices to enter Trader i ’s informa-

tion set while preserving results. Maintaining incomplete information would require an additional noise

component which would serve to only make the algebra much less tractable but would not significantly

alter our theoretical results. Market segmentation can also be relaxed with traders forming optimal port-

folios from multiple stocks along the lines of Glasserman and Mamaysky (2019). They show in a model of

portfolio choice that traders will endogenously specialize in either macro or micro information, and de-

rive conditions under which it takes more effort to acquire information about individual stocks than mar-

ket aggregates. This asymmetry provides the incentive for traders to specialize and acquire micro-level

information, and serves to justify our assumptions. Additionally, one robustness check of our empirical

results described above constructed mean-variance portfolios and showed that Samuelson’s Dictum is

preserved. As long as the traders are not pricing only the aggregate measure, our theoretical results will

continue to hold.

Trader i now has a signal extraction problem to solve. Given the stochastic process for dividends (20),

she cannot distinguish between idiosyncratic and aggregate shocks. The following proposition derives

the rational expectations equilibrium price.

Proposition 1. Let Trader i ’s information set be current and past dividends Ii t = {Di t ,Di t−1, ....} with the

dividend process given by (20), then the equilibrium price is given by

Pi t |Ii t =
(

θ(ρ−λ)

(1−θρ)(1−λL)

)
at +

(
θ(ρ−λ)

(1−λL)

)
ηi t (24)

12Our rationale for Assumption 1 (Market Segmentation) can be taken verbatim from Lucas (1975): “The problem is that in
an economy in which all trading occurs in a single competitive market, there is ‘too much’ information in the hands of traders
for them ever to be ‘fooled’ into altering real decision variables." If agents in our model traded in a single market—the aggregate
index of all firms—there would be too much information and macro efficiency would attain. Theoretical justification for both
Assumptions 1 and 2 is provided by Glasserman and Mamaysky (2019), who study information acquisition and portfolio choice
with idiosyncratic and aggregate shocks. Their primary result is that traders specialize in either macro or micro information,
and several of their corollary results support Samuelson’s Dictum.
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where

λ= 1

2

[( σ2
ε

σ2
ηρ

)
+

( 1

ρ
+ρ

)
−

{[ σ2
ε

σ2
ηρ

+
( 1

ρ
+ρ

)]2
−4

}1/2]
Proof: See Appendix A.

Notice that elements of the idiosyncratic shock now bleed into the loading on the aggregate shock at

through λ, which is a function of the signal-to-noise ratio. Forming the cross-sectional average (“Equal

Weight 1") dividend and price

D t |Ii t ≡ (1/I )
I∑

i=1
Di t |Ii t ≈ at (25)

Pt |Ii t ≡ (1/I )
I∑

i=1
Pi t |Ii t =

(
θ(ρ−λ)

(1−θρ)(1−λL)

)
at (26)

The aggregate measures are now incongruent in that pricing the dividend process (25) would yield the

equilibrium given by (23) and not (26). Therefore while the present value model is an accurate depiction

of individual firms, any test of the linear present value model based upon aggregate measures, (25) and

(26), would incorrectly reject the theory of the linear present value model of stock prices. By aggregating

the price and dividend process, the econometrician is not capturing the information set of the individual

traders.

The intuition for this result follows that of Goodfriend (1992) and Pischke (1995), who stress how

an information wedge between the behavior of individual consumption dynamics and their aggregate

counterparts may arise because individuals fail to perfectly disentangle the idiosyncratic component

of income from the aggregate component.13 This interpretation—applied to asset prices—says that id-

iosyncratic components should not be incorporated into stock prices, if perfectly observed, (22). Yet,

under incomplete information, this component affects individual stock prices because traders use it to

predict the aggregate component (via λ in (24)), which is not perfectly observed. Therefore, traders do

not react to aggregate shocks as they would in a complete information framework where idiosyncratic

shocks wash out, and this causes the failure of the present value model.

3.3 REGRESSION ANALYSIS Consider the correlation between the equilibrium price and the discounted

expected value of dividends, g t =∑
θ j D t+ j (a slightly modified form of the g used in Section 2). Note that

these correlations drive the regression coefficients tested in Section 2.

Rational expectations implies that at the individual firm level the covariance between the price and

discounted sum of dividends is equal to the variance of the price. This result holds at the individual firm

level independent of the information structure. Therefore, the regression analysis of individual firms

similar to those examined in Section 2 will yield a regression coefficient of (minus) 1 in theory. However,

this result is only applicable under aggregation when information is complete. When information is

incomplete, the typical correlation structure generated by the rational expectations equilibrium breaks

13We give credit to an anonymous referee for suggesting some of the language included in this paragraph.
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down and regression coefficients that deviate from (minus) one are possible. We show this formally as a

proposition.

Proposition 2. Define gi t ≡ ∑∞
j=1θ

j Di t+ j and g t ≡ ∑∞
j=1θ

j D t+ j , where D t = (1/I )
∑

i Di t |Ii t . Let Pi t |Ft

and Pi t |Ii t be the complete and incomplete information rational expectations equilibrium, respectively;

then,

Cov (Pi t , gi t |Ft ) = Var (Pi t |Ft )

Cov (Pi t , gi t |Ii t ) = Var (Pi t |Ii t )

Cov (Pt , g t |Ft ) = Var (Pt |Ft )

Cov (Pt , g t |Ii t ) = Var (Pt |Ii t )

(
(1−λ2)

(ρ−λ)(1+λρ)

)
(27)

Proof: See Appendix A.

That the covariance of the price and discounted sum of dividends equals the variance of the price is

another way of saying that the discounted sum of dividends accurately reflects the price, i.e., Cov(Pi t , gi t ) =
Cov(Pi t ,Pi t ) = Var(Pi t ). This is true for all but the last term, which shows that the correlation between

equilibrium price (Pt ) and discounted sum of dividends formed by the econometrician (g t |Ii t ) is equal

to the variance of the price formed by the econometrician (Pt |Ii t ) and a correction term that accounts

for the discrepancy between the econometrician’s information set and that of private agents. This cor-

rection term can be positive or negative contingent on the values of ρ and λ.

To test the extent to which our theory can account for the type of discrepancy between the micro

and macro estimates found in Table 2, we conduct the following Monte Carlo thought experiment that

exactly replicates the empirical procedure of Section 2.2:

1. Simulate data for several hypothetical firms from the model under incomplete information. The

dividend process is drawn from (20)–(21) and the price process from (24).

2. Calculate the “Equal Weight 1" dividend-price ratio,

D t /Pt =
∑I

i=1 Di ,t∑I
i=1 Pi ,t

3. Calculate the truncated proxy for the dividend growth given by (5), which we repeat here for con-

venience,

ĝ D
t =

K∑
k=1

(∆D t+k /Pt )/(1+ r )k−1

4. Estimate the regression, g D
t = α+β(D t /Pt )+ εt , for the individual firms and the equal-weighted

average. Test the theoretical prediction of β=−1.
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K=10 K=20 K=30 K=40 K=50 K=200

Ind. (high noise) −0.993 −0.998 −1.001 −1.008 −1.005 −1.000
Agg. (high noise) −0.508 −0.611 −0.658 −0.645 −0.649 −0.659
Ind. (low noise) −0.956 −0.996 −0.997 −1.004 −0.999 −1.008
Agg. (low noise) −0.519 −0.692 −0.716 −0.741 −0.725 −0.746

Table 5: Simulated Regression Results. This table reports the slope coefficients (β) of the regression
of future dividend growth on current dividend-price ratio for individual firms (averaged, “Ind.") and for
equal-weighted aggregates (“Agg."). Results are ordered according to truncation parameter K and signal-
to-noise ratio (“high" or “low").

Table 5 presents the results for the simulated data. Entries are the slope coefficients of the regression

of ĝ D
t on the dividend price ratio (D t /Pt ) for various truncation parameters, K . The dividend processes

was calibrated to match the estimated persistence of the Equal-Weight 1 Balanced Panel dividend; that

is, we estimated an AR(1) process for the aggregate dividend using the data from the Equal-Weight 1

Balanced Panel and used the same autocorrelation coefficient for the simulation, ρ = 0.95. In order to

assess the importance of the signal extraction problem, we examined both a “high noise" and a “low

noise" estimate. Under both calibrations, we assume the majority of the variance of the dividend pro-

cess is attributable to aggregate factors. This assumption comes from a principal component analysis of

the 46 dividend series of firms that survived the entire sample; only one factor was selected. The low-

noise calibration, {σ2
i = 0.2, σ2

ε = 0.05}, implies 72% of the variance of the dividend process is attributable

to the aggregate shock; while the high-noise calibration, {σ2
i = 0.8, σ2

ε = 0.05}, attributes 40% to the ag-

gregate shock. This calibration implies a λ of 0.77 in the low-noise case and 0.921 in the high-noise case.

Following Jung and Shiller (2005), we set θ = 0.95, which is consistent with the average return of the 47

firms that survived the entire sample (inclusive of dividends). Our simulations assume 100 firms and at

least 8,000 observations.

We make two points about our calibration. First, note that we attribute a significant amount of the

variation in the dividend to the aggregate shock. While this is consistent with the principal component

analysis of the 46 dividend series of firms that survived the sample, one can argue that it is too high

for the firms that did not persist for the entire sample (see, e.g., Vuolteenaho (2002)). Results presented

below improve monotonically as we attribute more of the variance to the individual component, so one

can argue that our results are a lower bound. Second, as long as the autocorrelation coefficient for the

dividend process remains positive, our qualitative results continue to hold. Moreover, autocorrelation

coefficients as low as 0.75 do not substantially alter our quantitative message, which is well within several

standard errors of the 0.95 estimate discussed above.

Table 5 shows that our theory is largely able to capture the empirical results of Table 2. The aggregate

estimated coefficients are nearly 50% below the true coefficient of -1 for K = 10. The bias is not as se-

vere as K increases but remains significantly different from the true value, which is also consistent with

Table 2. In order to match the highest values for Cap Weight 1 in Table 2, we would need to increase the

variance of the idiosyncratic shock such that a majority of the total variance of the dividend process is at-

tributable to the idiosyncratic component. The larger the firm (in terms of cap size), the more realistic is
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this assumption. Thus, our theory can also explain why the Cap Weight estimate is higher than the Equal

Weight estimate in Table 2, and further from -1. Finally, note that Table 5 suggests the approximation

error associated with the truncation parameter is not substantial.

3.4 EXCESS VOLATILITY Much like the regression analysis, the proposed theory can help explain the

excess volatility apparent in the aggregate measures but absent from individual firm observations. Recall

the variance bound from Section 2.3,

Var(P⋆
t ) = Var(Pt )+Var(P R

t ) ≥ Var(Pt ) (28)

where P⋆
t is defined as the perfect foresight price, P R

t is the conditioning down term and the equilib-

rium price is given by the difference between the two, Pt = P⋆
t −P R

t . The bound is driven by an infor-

mational argument. Under standard assumptions, traders use all available information to price the as-

set, Pt = Et (P⋆
t ), ensuring orthogonality between Pt and P R

t and therefore cov(P R
t ,Pt ) = 0, which proves

the bound (28). Under Assumptions 1-2, the variance bound applies to the pricing of individual firms,

even when information is incomplete, because traders are using all available information to price the

asset. Micro efficiency holds. When information is complete, the bound also holds in the aggregate.

Substituting the value for the dividend process (20) and (21) into the equal-weighted aggregate price

Pt |Ft = (1/I )
∑I

i=1 Pi t |Ft and calculating the variance yields,

Var(P⋆
t |Ft ) = Var(Pt |Ft )+ θ2σ2

ε

(1−θρ)2(1−θ2)
(29)

However, the argument does not apply to an aggregate index in which traders have incomplete infor-

mation. Under these assumptions, an econometrician would aggregate the dividend process, D t |Ii t =
(1/I )

∑
i Di t |Ii t , in positing the perfect foresight price for the index

P⋆
t |Ii t ≡

∞∑
j=1

θ j D t+ j = θεt

(1−ρL)(L−θ)
(30)

This is inconsistent with the true aggregate perfect foresight price; that is, Pt |Ii t ̸= Et (P⋆
t |Ii t ), where the

conditional expectation is taken with respect to the econometrician’s information set. By averaging over

the dividends in (30), the econometrician eliminates the effect of the idiosyncratic shocks entirely. When

information is complete, this is harmless as traders can distinguish between aggregate and idiosyncratic

shocks. However with incomplete information, the reaction of the aggregate price is different from the

complete information benchmark because traders react also to individual shocks when they price indi-

vidual shares.

To get a quantitative assessment of the excess volatility of Table 4, we follow the same simulation

steps as in Section 3.3 and invoke the test of West (1988b). Recall our simulation contained a high noise

calibration {σ2
i = 0.8, σ2

ε = 0.05} and a low noise calibration {σ2
i = 0.2, σ2

ε = 0.05}, with 100 firms and

8,000 observations per firm. Recall also that the present value model can be tested based on the sign of
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the statistic E [Pt −Π(Pt |Ht−1)]2 −E [Pt −Π(Pt |It−1)]2, which Section 2.3 establishes as

Υ=V(Ht−1)−V(It−1)

= ((1− θ̂)s(1−
q∑
1
θ̂ j φ̂ j ))−2σ̂2

v − θ̂−2σ̂2
u

where Ht−1 and It−1 are nested information sets, Ht ⊂ It . A test of excess volatility is then H0 : Υ ≥ 0. A

negative value ofΥ indicates that enlarging the information set leads to the perverse result of an increase

in the innovation variance.

The average statistic for the individual firm for the high-noise (low-noise) case is Υ= 0.1759 (0.125),

indicating no excess volatility. Averaging across firms gives a statistic of −0.3034 in the high-noise case

and −0.2702 under low noise. One can also calculate an approximate percentage of the variation that

is excessive, Υ̃ defined in (18), which is 25.89% in the low noise case and 29.24% in the high-noise cali-

bration. While our theory is able to qualitatively deliver the correct sign, we are unable to generate the

magnitude of excess volatility observed in data. Under current assumptions, matching the S&P 500 data

would require an idiosyncratic shock variance that is roughly 25 times larger than the aggregate shock

variance. While this is not consistent with data, if we were to allow traders to observe stock prices, we

would need additional noise to ensure incomplete information persists in equilibrium. Kasa et al. (2014)

show that such a model is capable of generating excess volatility consistent with data.

4 CONCLUDING THOUGHTS

The influence of Phelps (1969) and Lucas (1975) has had a resurgence in the macroeconomics literature.

The excellent handbook article by Angeletos and Lian (2016b) documents how incomplete information

“offers a useful method for introducing frictions in coordination and for enriching the dynamics of ex-

pectations in macroeconomic models. This enrichment leads to the questioning of existing interpreta-

tions of, and helps shed new light on, important phenomena such as business cycles and crises." We

believe our results harbor far-reaching consequences that may question existing interpretations. Many

decades ago, the rational expectations, present-value model was deemed anomalous and a notable shift

toward relaxing defining assumptions ensued. However, nearly all of the prominent papers in the empir-

ical finance literature framed the debate through the lens of an aggregate index or portfolio of assets. The

conventional view of Samuelson’s Dictum (if one exists) is nicely captured by Campbell (2017) (p. 144),

which we paraphrase here: Cash-flow news drives stock-level return variation and can be completely

diversified away in the aggregate, allowing discount-rate news to determine the lion’s share of aggregate

stock returns. This result relies on being able to perfectly disentangle idiosyncratic and aggregate shocks,

which we view as a strong assumption. Our results suggest that a combination of incomplete informa-

tion and aggregation offer an alternative interpretation that is not mutually exclusive. Indeed, several

recent papers document how incomplete information can help reconcile theory and macroeconomic

data [e.g., Lorenzoni (2009), Angeletos and Lian (2016b), Wu et al. (2020)] and we have shown a similar

explanation can be applied to asset pricing data.
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5 APPENDIX A: DERIVATIONS AND PROOFS

5.1 DERIVING (3) FROM (2) The present-value model of stock prices is given by

Pt = Et

∞∑
j=1

(1+ r )− j D t+ j (31)

Multiple by r and add D t to both sides of (31).

r Pt +D t = D t + rEt

∞∑
j=1

(1+ r )− j D t+ j

Dividing by Pt and re-arranging yields

D t

Pt
= r + D t

Pt
− r

Pt
Et

∞∑
j=1

(1+ r )− j D t+ j

= r + D t

Pt
− r

Pt
Et

(D t+1

1+ r
+ D t+2

(1+ r )2 + D t+3

(1+ r )3 +·· ·
)

= r + 1

Pt
Et

(
D t − r D t+1

1+ r
− r D t+2

(1+ r )2 − r D t+3

(1+ r )3 +·· ·
)

Note r
1+r = 1− 1

1+r , r
(1+r )2 = 1

1+r − 1
(1+r )2 and therefore

D t

Pt
= r − 1

Pt
Et

(
−D t +D t+1

(
1− 1

1+ r

)
+D t+2

( 1

1+ r
− 1

(1+ r )2

)
+D t+3

( 1

(1+ r )2 − 1

(1+ r )3

)
+·· ·

)
Defining ∆D t+ j ≡ D t+ j −D t+ j−1

D t

Pt
= r − 1

Pt
Et

(
∆D t+1 + ∆D t+2

1+ r
+ ∆D t+3

(1+ r )2 +·· ·
)

= r −Et g D
t (32)

5.2 DERIVING THE HANSEN-SARGENT FORMULA The present value model of stock prices is given by

equations (9)–(10), which we replicate here for convenience,

Pt = θEt [Pt+1 +D t+1] (10)

D t = A(L)vt (11)

For this derivation, we assume traders have complete information and observe the sequence of shocks

Ft = {vt , vt−1, vt−2, ...}. This suggests an equilibrium price that is a linear function of Ft ; namely, Pt =
P (L)vt .
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Expectations are taken using the Wiener-Kolmogorov optimal prediction formula,

E(Pt+1|Ft ) = L−1[P (L)−P0]εt

E(D t+1|Ft ) = L−1[D(L)−D0]εt

Substituting these into the equilibrium (9) and using the z-transform

P (z) = θ(z−1[P (z)−P0]+ z−1[D(z)−D0])

zP (z) = θP (z)+θ[D(z)−D0]−θP0

(z −θ)P (z) = θ[D(z)−D0]−θP0 (33)

The goal is to solve for P (z) as a function of the exogenous processes. Note that θ ∈ (0,1) implies that

P (z) will not be analytic inside the unit circle. Analyticity in the space of z-transforms is tantamount to

stationarity in the time domain. This instability can be offset by P0, which is a free parameter. Evaluating

at z = θ gives P0 = D0 −D(θ) and the solution is

P (z) = θD(z)−θD(θ)

z −θ (34)

See Whiteman (1983) for further exposition.

As a specific example, suppose D(z) = 1/(1−ρz), then

P (z) = θ
(

1

1−ρz
− 1

1−ρθ
)/

(z −θ)

= θ
(

1−ρθ− (1−ρz)

(1−ρθ)(1−ρz)

)/
(z −θ)

= θρ

(1−ρθ)(1−ρz)

5.3 PROOF OF PROPOSITION 1 We now prove Proposition 1, which we repeat for convenience.

Proposition 2. Let Trader i ’s information set be current and past dividends Ii t = {Di t ,Di t−1, ....} with

the dividend process given by (20), then the equilibrium price is given by

Pi t =
(

θ(ρ−λ)

(1−θρ)(1−λL)

)
at +

(
θ(ρ−λ)

(1−λL)

)
ηi t

where

λ= 1

2

[( σ2
ε1

σ2
ηρ

)
+

( 1

ρ
+ρ

)
−

{[ σ2
ε1

σ2
ηρ

+
( 1

ρ
+ρ

)]2
−4

}1/2]
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Proof. The dividend process is a combination of an aggregate shock and idiosyncratic shock,

Di t = at +ηi t (23)

at = ρat−1 +εt (24)

and trader i ’s information set is given by Ii t = {Di t ,Di t−1, ...}. Sargent (1987) shows the fundamental

Wold representation for (20)–(21) is given by

Di t =
(

1−λL

1−ρL

)
ξi t (35)

λ= 1

2

[( σ2
ε

σ2
ηρ

)
+

( 1

ρ
+ρ

)
−

{[ σ2
ε

σ2
ηρ

+
( 1

ρ
+ρ

)]2
−4

}1/2]
ξi t ≡ εt

1−λL
+

(
1−ρL

1−λL

)
ηi t

σ2
ξ =

σ2
ε+σ2

η(1−ρ)2

(1−λ)2

We can use the formulas of the previous subsection, Section 5.2, to derive the equilibrium price by sub-

stituting (35) into (34), which yields

P (z) = θ
 1−λz

1−ρz − 1−λθ
1−ρθ

z −θ

=
(

θ(ρ−λ)

(1−ρz)(1−ρθ)

)

Pi t =
(

θ(ρ−λ)

(1−ρL)(1−ρθ)

)
ξt

=
(

θ(ρ−λ)

(1−ρL)(1−ρθ)

)(
εt

1−λL
+

(
1−ρL

1−λL

)
ηi t

)
=

(
θ(ρ−λ)

(1−ρθ)(1−ρL)(1−λL)

)
εt +

(
θ(ρ−λ)

(1−λL)(1−ρθ)

)
ηi t

which is consistent with (24).

5.4 PROOF OF PROPOSITION 2 Proposition 3.Define gi t ≡ ∑∞
j=1θ

j Di t+ j and g t ≡ ∑∞
j=1θ

j D t+ j , where

D t = (1/I )
∑

i Di t |Ii t . Let Pi t |Ft and Pi t |Ii t be the complete and incomplete information rational expec-

tations equilibrium, respectively; then,

Cov (Pi t , gi t |Ft ) = Var (Pi t |Ft )

Cov (Pi t , gi t |Ii t ) = Var (Pi t |Ii t )

Cov (Pt , g t |Ft ) = Var (Pt |Ft )

Cov (Pt , g t |Ii t ) = Var (Pt |Ii t )

(
ρ−λ

ρ(1−λρ)

)
(30)
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The first three equalities are trivial to prove as gi t and g t are accurate reflections of the equilibrium price.

That is, Pi t = E(gi t |Ft ), Pi t = E(gi t |Ii t ), and Pi t = E(gi t |Ft ). To show the last equality, note

Pt |Ii t =
(

θ(ρ−λ)

(1−ρθ)(1−ρL)(1−λL)

)
εt

g t |Ii t =
∞∑

j=1
θ j at+ j =

(
θ

(1−θL−1)(1−ρL)

)
εt

The variance of Pt |Ii t is given by

Var(Pt |Ii t ) = θ2(ρ−λ)2(1+λρ)σ2
ε

(1−θρ)2(1−λρ)(1−λ2)(1−ρ2)

and the covariance term

Cov (Pt , g t |Ii t ) = θ2(ρ−λ)σ2
ε

(1−ρθ)2(1−ρ2)(1−λρ)

A few algebraic manipulations of the above equations delivers (27).
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