
FORWARD INFLATION EXPECTATIONS: EVIDENCE FROM INFLATION CAPS AND FLOORS

Karsten O. Chipeniuk*† Todd B. Walker‡

July 2021

Abstract

Using daily prices of inflation caps and floors from 2012 through 2017, we document that caps
are more sensitive to statements by the Board of Governors of the Federal Reserve or its Chair, while
changes in floors are typically attributable to structural economic performance (e.g., labor markets,
oil prices). We adapt nonparametric estimation methods to derive forward probabilities from the em-
pirical distribution of historical U.S. inflation and estimate a regime-switching model for dispersion
in the forward distribution. We link the transitions in regime to perceived changes in monetary pol-
icy and sources of major economic uncertainty. While our analysis is not able to assign a quantitative
value to the change in inflation expectations (i.e., inflation expectations have declined by X %), we
can confirm the direction of change at a daily frequency. Moreover, we can assign nearly all substan-
tial movements to specific events, documenting asymmetry in the behavior of inflation expectations.
We provide a structural interpretation of our findings, emphasizing the importance of a zero-lower
bound over this time period. We also connect the dispersion in inflation expectations to newly de-
veloped measures of uncertainty [Jurado, Ludvigson, and Ng (2015), Baker, Bloom, and Davis (2016)].
Innovations to financial and macroeconomic uncertainty increase the dispersion in inflation floors,
while decreasing the dispersion in inflation caps.
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1 INTRODUCTION

The market for direct hedges of the inflation rate has matured since its inception, with $1.2 trillion worth

of treasury inflation protected securities (TIPS) issued in 20171 and over $2 billion of notional principle

cleared daily in the inflation swap market.2 Alongside the TIPS and swap markets, cap and floor contracts

have been written over-the-counter since late 2009. A question of continuing interest to financial market

participants and central banks is the extent to which activity in the market for inflation options provides

information with respect to investor beliefs about future changes in the rate of inflation.

We analyze daily Bloomberg composite prices for zero-coupon caps and floors over the period start-

ing in January 2012 until May 2017. We argue the substantial increase in volume over the initial years

of our sample period is sufficient for identifying changes in investor sentiment (Section 2). To back out

implied probability densities, we use the “canonical valuation" method introduced by Buchen and Kelly

(1996) and Stutzer (1996). This approach finds the forward densities that correctly price the inflation

option (no arbitrage) and are the closest to the empirical distribution of inflation, where “closest" is

measured according to the Kullback-Leibler Information Criterion (KLIC). The advantage of the canon-

ical method for our purposes here is that we can isolate the density associated with specific options;

that is, we do not need the entire set of option prices to form a forward distribution that is necessary of

the “derivative method" developed by Ross (1976), Breeden and Litzenberger (1978) and Aït-Sahalia and

Duarte (2003). This allows us to examine dispersion measures associated with inflation caps and floors

separately. More importantly, because the canonical valuation methodology is not reliant on having a

full set of option prices, we can exclude specific prices that suffer from potential illiquidity concerns.

Section 3 contains our main results. We find that dispersion in the forward inflation distribution ex-

hibits clear breaks between regimes following major economic developments. Transitions in dispersion

typically take place over a period of one day up to a week, and display high inertia. The high stability

and rapid transitions allow us to sidestep the critique of Fair (2002), and we find that breaks are typically

accompanied by either statements from the Federal Reserve and its Chairperson, or a shift in uncer-

tainty around a major economic events such as the European debt crisis, US debt-ceiling crises, and the

Greek bailouts. In particular, dispersion in the forward measure due to movements in the prices of in-

flation caps is associated with statements by the Board of Governors of the Federal Reserve or its Chair,

while changes in dispersion due to movements in the prices of inflation floors are typically attributable

to structural economic performance (e.g., labor markets, oil prices). Sections 3.2 conducts a narrative

view of changes in regime and we count only three exceptions to this stylized fact over the entire sample

period. Our approach demonstrates the benefit of high-frequency methods to identify monetary policy

following Gertler and Karadi (2015), Hanson and Stein (2015) and Nakamura and Steinsson (2018).

The asymmetry in inflation caps and floors is our primary finding and we offer a structural interpre-

tation in Section 3.3. The model is a relatively standard New Keynesian model with households that are

subject to discount factor shocks and a monetary policy authority constrained by the zero-lower bound

(ZLB). Using the nonlinear solution method and results developed in Richter, Throckmorton, and Walker

1See Kowara (2017).
2Daily volume reported by LCH: https://www.lch.com/services/swapclear/volumes

https://www.lch.com/services/swapclear/volumes


(2014), Gavin, Keen, Richter, and Throckmorton (2015) and Plante, Richter, and Throckmorton (2016),

we show that technology shocks are qualitatively different under the ZLB. Weakness in the labor mar-

ket is correlated with much lower expected inflation. This is consistent with our empirical finding that

statistics portending structural weakness in the economy (e.g., a weak employment report) almost al-

ways caused an increase in the dispersion of inflation floors. The model can also generate substantial

inflation uncertainty, defined as time-varying second moments, which is consistent with our regime-

switching specification.

Section 3.4 documents that our measures of expected inflation dispersion are significantly predicted

by changes in recently developed metrics of uncertainty and compares our metric to other measures of it

(e.g., VIX). Specifically, we regress dispersion on the financial and macroeconomic uncertainty of Jurado,

Ludvigson, and Ng (2015) and policy uncertainty of Baker, Bloom, and Davis (2016). All measures of

uncertainty are significant predictors of dispersion but the uncertainty of Jurado, Ludvigson, and Ng

(2015) enters negatively for forward dispersion due to inflation cap price movements and positively for

floor price movements. Thus, an increase in financial uncertainty decreases (increases) the dispersion

in caps (floors). This asymmetric response is consistent with the deflationary concerns revealed in our

regime-switching results, and explains why innovations to financial time series, on average, consolidated

expectations in inflation cap markets while unanchoring them in floor markets.

1.1 CONNECTIONS TO THE LITERATURE We examine derivative data from inflation floors and caps, as

opposed to the majority of the work in the inflation derivatives literature that attempts to back out ex-

pectations from Treasury Inflation-Protected Securities (TIPS). Absent market imperfections, the yield

of an inflation protected treasury will be lower than that on a vanilla treasury by an amount equal to

the expected inflation rate. The literature has achieved various levels of success in being able to back-

out accurate forecasts of inflation with TIPS, with the primary concern being liquidity [see, Sack and

Elsasser (2004), Fleming and Krishnan (2004), Gurkaynak, Sack, and Wright (2010), Grishchenko and

Huang (2013), Fleckenstein, Longstaff, and Lustig (2014), Grishchenko, Vanden, and Zhang (2016), An-

dreasen, Christensen, and Riddell (2018)].3 Kitsul and Wright (2013) also examine forward distributions

for inflation implicit in cap and floor prices early in the market’s lifetime. Since their study, the volume

for inflation caps and floors has quadrupled and thus worthy of additional study. More importantly, and

unlike Kitsul and Wright (2013), we systematize the event analysis to econometrically pinpoint when and

why events transmitted through to investor uncertainty via a narrative view of regime change at a daily

frequency.

Our methodological approach differs from the standard literature along two dimensions. First, a ma-

jority of the literature employs a “derivative method" based on the well known result that the second

derivative of the price of a call option with respect to the strike delivers the risk-neutral density [Breeden

and Litzenberger (1978), Ross (1976)].4 In contrast, we adapt the method of Buchen and Kelly (1996)

and Stutzer (1996), which minimizes the Kullback-Leibler Information Criterion (KLIC) metric, to esti-

mate the market forward distributions. We argue that this method is a relatively efficient and flexible

3Of course liquidity is a concern for our data as well. We discuss this issue in the following section.
4The appendix examines the derivative method using our data and offers a comparison with the canonical approach.
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procedure. Second, our paper does not attempt to recover expectations but instead focuses on connec-

tions between dispersion in forward distributions and underlying economic uncertainty. A simulation

exercise in Section 3 demonstrates that if changes in risk premia amount primarily to time variation

in the location parameter, our dispersion metric will correlate strongly across the physical and forward

probabilities. Our focus on dispersion is empirically motivated by substantial time variation in tails of

implied distributions and the associated pricing kernels found in our data. In addition, our empirical

application establishes a strong case for informational content of the difference between the 25th and

75th percentiles of forward distributions for inflation, which are constrained to correctly price individ-

ual as well as multiple options. That there is something to learn about inflation expectations from these

data relies on the underlying assumption that option prices contain information about extreme events

relative to macroeconomic data [Backus, Chernov, and Martin (2011)].

Our primary results complement Christensen, Lopez, and Rudebusch (2015), Grishchenko, Vanden,

and Zhang (2016), Fleckenstein, Longstaff, and Lustig (2017), Gimeno and Ibanez (2018), Gertler and

Karadi (2015), Hanson and Stein (2015) and Nakamura and Steinsson (2018). Christensen, Lopez, and

Rudebusch (2015) employ a term structure model with stochastic volatility to back out deflation protec-

tion embedded in TIPS. They show that the model accurately reflected the deflationary concerns prior to

(and throughout) the financial crisis. The option value is shown to closely follow overall market uncer-

tainty measures (e.g. VIX). Grishchenko, Vanden, and Zhang (2016) show that the information content

contained in TIPS concerning future inflation remains statistically significant even when explanatory

variables include lagged inflation, gold, crude oil, the VIX, liquidity, forecasting surveys, and the yield

spread between nominal Treasuries and TIPS. Fleckenstein, Longstaff, and Lustig (2017) examine the re-

lationship between deflation risk and financial and macroeconomic tail risks found in inflation swaps

and options. They find that deflation risk varies with the horizon; short-term deflation risk correlates

strongly with measures of risk in the financial markets such as Libor spreads, swap spreads, stock returns,

and stock market volatility; intermediate-term deflation risk correlates with structural factors such as the

risk of sovereign defaults in the Eurozone; and long-term deflation risk is driven primarily by macroe-

conomic factors. Gimeno and Ibanez (2018) focus on how risk-neutral densities, backed out from the

forward 5-on-5 year inflation rate, respond to ECB’s decisions and communication since 2009. Their

main finding is that these distributions have significant time-variation. Like these papers, we show the

informational content embedded in the inflation-derivatives market is substantial. We also demonstrate

a tight connection between our dispersion measure and financial, macroeconomic, and policy measures

of uncertainty. Unlike these papers, we show [i] how inflation caps and floors respond differently to un-

certainty measures and macroeconomic factors; [ii] we provide a narrative view of regime change in dis-

persion that is consistent with a compelling economic narrative; [iii.] we focus on high-frequency (daily)

identification of market expectations that can provide policy makers with real-time analysis. Finally,

our paper contributes to the movement toward using high-frequency identification methods in mone-

tary policy. Gertler and Karadi (2015), Hanson and Stein (2015) and Nakamura and Steinsson (2018) all

demonstrate how high-frequency methods can help improve identification. Our main results connect

daily movements in option prices to monetary policy announcements and other macroeconomic news.
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Figure 1: Volume of inflation options traded in New York and London.

2 INFLATION CAPS AND FLOORS

A zero-coupon inflation cap of strike rate k and maturity h written at time t is a contract in which the

seller agrees to pay the buyer the difference between actual average annualized inflation rate (headline

consumer price index, non-seasonally adjusted) over the period t to t +h (π̄t ,t+h) and the strike rate in

the event that this difference is positive, max((1+ π̄t ,t+h)h − (1+k)h ,0). In exchange for the contract, the

seller receives a payment of Vt (k,h) at time t , which is a function of the strike rate and time to maturity.

An inflation floor is analogous, with the payment being max((1+k)h − (1+ π̄t ,t+h)h ,0).

Our analysis considers daily prices for zero-coupon caps and floors over the period starting in Octo-

ber 2009 until May 2017.5 The data are Bloomberg composite prices (CMPN) which consist of averages

of market quotes from various banks and brokers (e.g., Bank of America, Merrill Lynch, and BGC), with

outliers removed. Figure 1 shows the substantial increase in volume over the initial years of our sample

period, reaching 50bn in 2010 (up from 13bn in 2009 and 1bn in 2005). As a percentage of the overall

US inflation derivative market based on interdealer volumes, inflation options grew from less than 10%

of the market in 2009 to roughly 30% in 2011, exceeding the TIPS ASW market (BGC Partners). Fleming

and Sporn (2013) argue that “the U.S. inflation swap market appears reasonably liquid and transparent

despite the market’s over-the-counter nature and modest activity." While the option market is smaller

than the swap market studied by Fleming and Sporn, many of the same participants are active in both

markets. Firms that offer inflation protection typically have inflation-adjusted inflows (e.g., utilities, real

estate developers, retailers). Conversely, firms and entities that buy inflation protection have inflation-

linked outflows (e.g., pension funds, inflation mutual funds). Both types of firms are active traders in

the options, swaps, and TIPS markets according to Kerkhof (2005). Moreover, as argued by Kitsul and

Wright (2013), while the notional amount traded in these option markets is relatively small compared

to, for example, the market for U.S. Treasuries, the amounts are “still big enough to presumably reflect

the beliefs of traders in this market, and far bigger than those in experimental games and in prediction

5We do not extend the data beyond 2017 due to liquidity concerns. The period of our analysis contains several strike prices
and volume was increasing, indicating a relatively liquid market. These phenomena reversed course in 2018, which explains
our end-point of 2017.
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(b) Strikes for inflation floors

Figure 2: Maximum and minimum strike rates for traded inflation caps (a) and floors (b), along with
inflation as calculated from CPI

markets" where studies have shown prices are informative.

For a given date in our sample, data will potentially contain market prices for one year caps with

strikes −1%,−0.5%,...,6%. Likewise, the possible strikes for traded one year floors could range from −3%

to 5% in 0.5% increments. For nearly all dates in our sample, there are observed prices for one year caps

of strikes between 1% and 3.5%, and for inflation floors between −2% and 3%. Price data for one year

option strikes beyond this range are available only relatively early in the sample period, indicating an

overall trend towards consolidation in the market around the middle of the initial band.

Figure 2 plots the maximum and minimum strikes which are available from late 2009 through 2016,

along with the non-seasonally adjusted, year-over-year percentage change in the CPI (the base asset in

the option contracts). Note that the inflation series falls below the available strike band for caps in late

2014 and stays outside this band for the following year and a half. The analogous plot for inflation floors

is shown in Figure 2b. Generally the market for these options appears to be broader, with contracts

being available across the range from −2% to 3% for most of the sample period. On the other hand, the

availability of floor contracts has been relatively more volatile than that of caps since 2014: while not

visible in the figure, only strike rates of 0% were available on multiple days near the start of the 2015

deflationary episode.

2.1 INFORMATION CONTENT OF PRICES Before turning to our more formal analysis of the data, we

provide prima facie narrative evidence that the prices of inflation caps and floors are an important source

of news concerning inflation expectations. The purpose of this section is twofold: first, it shows that

prices of caps and floors do move in response to economic news; and second, it provides motivation

for our formal analysis of Section 3.1 by demonstrating that prices with strikes far away from current

inflation rates can move for reasons that have no economic interpretation. By repeating this exercise
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with a formal model, we are able to highlight the added identification that comes with a more formal

approach. (Foreshadowing results, Table 3 contains several more entries relative to 1.)

Date Cap Event

Feb. 21, 2012 Down Euro zone finance ministers agree to bail out Greece.
Apr. 4-9, 2012 Up Draghi speech on downside risks; Fed forecasts less QE.
Sept. 13, 2012 Down FOMC, increase to QE.
Jan. 31, 2013 Down FOMC statement, Q4 contraction expected to be short lived.
Feb. 11, 2014 Up Oil price crash; Yellen says negative rates are not off table.
Apr. 15-16, 2014 Up Fed Beige Book release and Yellen’s first speech.
May 26, 2015 Down Yellen: appropriate to raise interest rates within the year.
July 5, 2015 Down Day after Greek referendum on bailout.

Date Floor Event

Jan. 23, 2012 Down Greece negotiations. Fed forward guidance.
Aug. 10, 2012 Down Strong US labor market data.
Nov. 14, 2012 Up Weak US retail data, FOMC minutes published.
Apr. 16, 2015 Down Rise in oil prices, ECB rate decision.
March 2-4, 2016 Down US labor market and manufacturing data, increased oil prices.

Table 1: Economic events that coincident with z-scores greater than one for 1% cap option maturing in
1 year (top) and 1% floor options maturing in 1 year (bottom). There are four unexplained changes in
z-score that have no synchronous economic event.

Specifically, we calculate z-scores for prices of 1% caps and floors with a duration of one year, and

compare significant movements (> 1.5 standard deviation) to news events from 2012 to 2017. Table

1 summarizes our findings. A search was conducted to identify any major economic news or policy

developments which coincided with significant z-scores (> 1.5) in the series. Table 1 displays the z-scores

that coincide with economic events. Movement in caps can be associated with a statement by the Board

of Governors of the Federal Reserve or its Chair, while movements with respect to floors are typically

preceded by changes in structural economic performance (e.g., labor markets, oil prices). There are

only four changes in z-score that do not coincide with an economic announcement or event. Extending

the prices beyond the 1% cap / floor to include strikes greater than or equal to 3% picks up 3/4 of the

events of Table 1 but eight changes in z-score that do not appear to be consistent with economic events

/ announcements. If we extend out to 4% strikes, the number of changes that are unrelated to economic

events is even higher at 15.6 We view this narrative exercise as evidence in favor of our hypothesis that

caps and floors respond to economic news with caps reacting more to monetary policy announcements,

assuming a 1% strike. However, we need a more formal connection to the underlying inflation process,

which is developed in the next section.

6Of course, it is impossible to rule out all events that could cause prices to fluctuate. In order to help determine "non-
events" we looked at the correlation with spikes in the VIX.
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2.2 CANONICAL VALUATION We now describe a nonparametric method for extracting implied proba-

bility distributions for inflation from option strike-price curves based on the work of Buchen and Kelly

(1996) and Stutzer (1996).7 Consider the empirical distribution (π, p) = {πi , pi }N
i=1 of h year annualized

inflation πt ,t+h . That is, π contains observations of h year annualized inflation over the sample pe-

riod while pi = 1/N for every i . Buchen and Kelly (1996) and Stutzer (1996) provide a simple method

for estimating the risk-neutral distribution (π, p∗) from (π, p). Specifically, this method minimizes the

Kullback-Leibler Information Criterion (KLIC) metric8

I (p , p∗) =
N∑

i=1
p∗

i log(p∗
i /pi ) (1)

subject to the constraints

p∗
i ≥ 0, i = 1, ..., N

1 = p∗
1 + ...+p∗

N

Vt = Bt ,t+h

N∑
i=1

p∗
i Vi ,t+h

where Vt denotes the time t value of an option expiring in h years, Vi ,t+h denotes its expiration value

if annualized inflation over the option’s lifetime is πi , and Bt ,t+h denotes the price of an h year bond at

time t . Hence the third constraint stipulates that the probabilities p∗ should correctly price a particular

option on a particular date. This constraint can be tightened to include multiple options.

When applied with a uniform distribution across N observed outcomes, as occurs for an empirical

distribution, the KLIC minimization is equivalent to maximizing the Shannon entropy of the estimated

forward distribution, given by

−
N∑

i=1
p∗

i log(p∗
i ) (2)

The solution of the Shannon entropy constrained maximization problem is known to give a multivariate

canonical distribution

p∗
i =

exp
(∑M

m=1λ
∗
mV (m)

i ,t+hBt ,t+h

)
∑N

j=1 exp
(∑M

m=1λ
∗
mV (m)

j ,t+hBt ,t+h

) (3)

in the case of M option pricing constraints where the corresponding options have time t+h payoff V (m)
i ,t+h

for each prevailing inflation state i = 1, ..., N . Here the Lagrange multipliers λ∗ = (λ∗
1 , ...,λ∗

M ) are given as

7The appendix contains an analysis of our data using the derivative method of Aït-Sahalia and Duarte (2003) and Kitsul
and Wright (2013).

8Information theoretical approaches to statistics and econometrics have a long history (see Kullback (1968) and Judge and
Mittlehammer (2012)). Generalizations of the method of Stutzer (1996) and their interpretation appear in Haley and Walker
(2010) and Haley, Mcgee, and Walker (2013).
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solutions to the unconstrained minimization problem

λ∗ = arg min
λ

N∑
i=1

exp

(
M∑

m=1
λm

[
V (m)

i ,t+hBt ,t+h −V (m)
t

])
(4)

Given h year treasury yields and prices for inflation derivatives with maturities of h years on a given

date, we can therefore numerically solve (4). Once the Lagrange multipliers are found, the estimated

forward probabilities are obtained by substitution into (3). The minimization in (4) is tractable for a low

number M of options, but will face the curse of dimensionality as the number of constraints is increased.

3 UNCERTAINTY IN INFLATION OPTIONS MARKETS

Applying the method described in the previous section to floor and cap options, we turn now to examin-

ing the dynamics and drivers of uncertainty in the forward distributions for inflation, as measured by the

difference between the 25th and 75th percentiles. Our interest in this particular metric for uncertainty

follows from the observation that model implied pricing kernels estimated using data from floors and

caps display substantial time variation in tail behavior. In particular, using the approach of Rosenberg

and Engle (2002), Kitsul and Wright (2013) specify the pricing kernel as a nonlinear function of average

annual inflation over the next h years, π(h)

Mt (π(h)) = θ0t T0(π(h))+θ1t T1(π(h))+θ2t T2(π(h))+θ3t T3(π(h))

where T j (·) are Chebyshev polynomials defined over the range of annual inflation (-2% to 6%) and the

vector of parameters θt are estimated by minimizing the distance between the actual price of the infla-

tion floor or cap and the model-implied price. Figure 3 is taken from Kitsul and Wright (2013) and plots

the empirical pricing kernels for various maturities and years. The distributions are all centered around

1.5% to 2% but the behavior in the tails of the distributions [< 0%; > 2.5%] show substantial variation

with time.

While our results apply to the subjective forward distributions rather than to the actual physical like-

lihood of (dis)inflationary events, simulation evidence suggests that under some circumstances uncer-

tainty may correlate well across both. For example consider pricing a European call option with expira-

tion date T and strike price X . The price C discounted at the risk-free rate of interest r is given by

C = E
Q
t

{max[ST −X ,0]

(1+ r )T

}
, (5)

where ST is the price of the underlying asset at date T , and E
Q
t implies that the expectation is taken with

respect to the risk-neutral (equivalent-martingale) measure. Suppose further that the stock price follows

a normal mixture, f (S) = ∑k
i=1[λi fi (s)], where fi denotes the normal distribution with moments µi and

σi , and
∑

i λi = 1. It is well known [Cox and Ross (1976)] that the one-period-ahead option price follows a

mixture of Black-Scholes formulas C (St , t ) =∑
i λi Ci (Si ,t , t ). If the option expires several periods ahead,

the weights are drawn according to the multinomial distribution. We then conduct the following steps:
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Figure 3: Empirical pricing kernels of Kitsul and Wright (2013)

1. Simulate data from the model over a period equal to roughly one year, using a high (0.25) and low

(0.1) variance calibration with the means also equal to a high (0.3) and low (0.025) setting. The

calibration roughly matches the CPI process over our sample period.

2. Calculate the empirical distribution of returns, Rt ,h = (St+h/St ), at horizon h.

3. Using the Canonical Valuation methodology of Section 2.2, compute the forward probabilities, p∗
t ,

that correctly price the European call option, (5).

4. Compute the 25th-75th dispersion in both the physical and forward densities, and calculate the

statistical discrepancy between the two measures.

Note that our calibration assumes the discrepancy in our first moments exceeds that of the second mo-

ment. Therefore time-variation in the mean exceeds that of the variance in our simulations. If we assume

250 observations, the correlation between the mean of the physical and forward distribution is 0.67 while

the correlation in the 25th-75th dispersion between the two distributions is 0.91. If we increase the num-

ber of observations to 1000, the correlations become 0.63 and 0.94, respectively. A caveat to our results

is that the calibration, which follows from the underlying inflation data, assumes much of the variation

is due to changes in the mean. If we reverse this assumption and impose more variation in the volatility,

the correlations in the dispersion metric fall below 0.9.

Below we will examine dispersion in the estimated forward distributions for individual one year cap

and floor markets separately. That is we set M = 1 in the notation of the previous section, and compute

the resulting dispersion metric when the option is a one year floor with strike rate near the middle of the

historically available range, repeating the exercise with a one year cap. To understand the implications of
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this selection for the resulting dispersion dynamics, consider the case in which the empirical distribution

of inflation outcomes contains only two observations (N = 2), π1 and π2. More specifically, suppose that

the option pricing constraint is that for a one period floor of strike rate k, π1 < k <π2, so that the option

is out of the money in outcome 2, V2,t+1 = 0. Under these assumptions, the minimization in (4) admits

an analytic solution

λ∗ = 1

V1,t+1Bt ,t+1
log

(
Vt

V1,t+1Bt ,t+1 −Vt

)
with corresponding forward probabilities

p∗
1 =

Vt
V1,t+1Bt ,t+1−Vt

1+ Vt
V1,t+1Bt ,t+1−Vt

= Vt

V1,t+1Bt ,t+1
, p∗

2 = 1−p∗
1 .

While this simple discrete distribution does not allow a calculation of dispersion as the difference

between fixed percentiles, a model of the cummulative distribution function which is continuous and

piecewise linear while maintaining these values does. In particular, if we let πlo = π1 − p∗
1

(
π2−π1

p∗
2

)
and

estimate the forward CDF as

F (π) =


0 π<πlo

p∗
1 + (π−π1)

(
p∗

2
π2−π1

)
πlo ≤π<π2

1 π≥π2

then dispersion in the forward distribution is given by

d∗
t = 1

2

 π2 −π1

1− Vt
V1,t+1Bt ,t+1

 (6)

Hence dispersion under these assumptions is a function of Vt /Bt ,t+1, the prevailing market price of the

floor empirically measured at time t compounded one period forward. As the price of the floor increases,

so does dispersion, and vice versa. In other words, the value of insurance increases if and only if forward

uncertainty increases in this simplified framework. While weakening the assumption on N prevents the

derivation of a closed form expression, it is clear from the structure of the canonical method optimiza-

tion that dispersion will remain a function of the compounded option price. Moreover, weakening the

assumption on M results in a dispersion metric which fluctuates with each of the included option prices,

once again compounded forward.9

As a consequence of these considerations, we observe a number advantages to considering the for-

ward distributions associated with individual option prices. In the event that different information

drives the various markets, as could be the case if markets are segmented10 or participants condition

9Closed form expressions are once again available for multiple options with N = 2.
10One potential explanation for segmented markets for inflation floors or caps is the possibility that differing portfolio types

need to be hedged against differing risks. For example, a fixed income portfolio manager is likely to be more concerned about
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on market-dependent information sets, including multiple options could obscure information about

what is drives the individual markets. Based on the evidence in Section 2, to be strengthened below, we

believe it is likely that inflation cap and floor markets react to different sources of uncertainty. Moreover,

illiquidity in markets for very high or low strike rates potentially introduces a further source of noise,

motivating the omission of these prices.

3.1 REGIME-SWITCHING MODEL We consider a regime-switching model that disciplines the hypoth-

esis of asymmetry between the canonical floor and cap measures. In particular, we specify a model for

dispersion of the form,

Dispt =µst +εst

in which the mean µ of the model stochastic process depends on the regime st ∈ {0,1}. Likewise, the

innovation variances are regime specific, so that εst ∼ N (0,σst ). If in state 0, the process remains in state

0 with probability p00, so that the expected duration of the state is 1/(1− p00) and similarly for other

states. With probability p01, the state transitions from 0 to 1.

We estimate four iterations of the model using the Canonical measure of dispersion: 1. one-year in-

flation cap with two states; 2. one-year inflation cap with three states; 3. one-year inflation floor with

two states; 4. one-year inflation floor with three states. We focus on floors and caps separately in order to

determine if dispersion behaves differently for changes in expected inflation vis-a-vis expected disinfla-

tion. The model is estimated using using quasi-maximum likelihood estimation [White (1982), Cho and

White (2007)]. Algorithms used to determine the predictive, filtered, and smoothed probabilities permit

a “quasi" likelihood estimation that maximizes the log-likelihood of the weighted average of Gaussian

distributions. Given an initial value for the state, the quasi-likelihood function is given by

LT (Θ) = 1

T

T∑
t=1

ln( f (xt |x t−1;Θ))

f (xt |x t−1;Θ) = pr (st = 0|x t−1;Θ) f (xt |st = 0, x t−1;Θ)+pr (st = 1|x t−1;Θ) f (xt |st = 1, x t−1;Θ)

where Θ = {µs ,σs , p00, p11} and pr (st = j |x t−1;Θ) is the predictive probability of being in state j condi-

tional on information (dispersion) available through t −1, x t−1. The estimated filtered, smoothed and

predictive probabilities are obtained in the usual recursive fashion [see, Hamilton (1994)].

The estimated parameters are given in Table 2. With two states, the estimated means are 1.24% and

1.44% respectively for caps, and 1.64% and 3.01% for floors. Note that mean dispersion is twice as high

when using floor data. Moving to a three-state model does not change the estimated means substantially

for the caps with a range of 1.16% to 1.33%. However, the estimated means for the floor are quite different

in the three-state regime model. The mean in the high state is nearly three times as large as the low

state mean (4.44% vs. 1.63%). Volatility is also substantially different between floors and caps. The low

high inflation eroding returns, whereas a risky equity portfolio manager may be more concerned with macroeconomic devel-
opments correlated with disinflation.
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Cap-2 Floor-2 Cap-3 Floor-3
State 0 State 1 State 0 State 1 State 0 State 1 State 2 State 0 State 1 State 2

µ 0.0124 0.0144 0.0164 0.0301 0.0116 0.0133 0.0144 0.0163 0.0265 0.0441
σ 1.91(-3) 2.32(-4) 9.02(-4) 8.56(-3) 2.45(-3) 5.34(-4) 1.99(-4) 8.58(-4) 5.86(-3) 1.19(-3)

p0 j 0.978 0.022 0.994 5.96(-3) 0.985 6.95(-3) 7.75(-3) 0.994 5.56(-3) 0.00
p1 j 0.028 0.972 1.16(-2) 0.988 4.31(-3) 0.963 3.26(-2) 1.27(-3) 0.976 1.08(-2)
p2 j NA NA NA NA 4.43(-3) 2.32(-2) 0.972 0.00 5.43(-2) 0.946

Table 2: Parameter estimates for a two and three state regime model for dispersion in 1 year inflation ex-
pectations for floors and caps. The numbers in parenthesis represent a shorthand for scientific notation;
that is, (−3) ≡ 10−3.

(a) Caps-2 (b) Floors-2

Figure 4: Filtered probabilities in two state regime switching models for dispersion in one year ahead
inflation expectations, as implied by the canonical distributions which correctly price a cap or a floor
with strike 1% at each date.

dispersion state is an order of magnitude more volatile than the high dispersion state(s) for caps, while

the opposite is true for floors. For the two-state regime model, the high dispersion state is an order of

magnitude more volatile for floors, and five times more volatile in the three-state model.

Regimes are persistent. Duration in each regime is slightly higher for floors relative to caps, with

the low-mean state being the most persistent. The 3-state floor estimates show that regime progresses

sequentially from low (State 0) to medium (State 1), and from high (State 2) to medium (State 1), but

never from high to low or vice versa. For caps, transitions primarily occur between the high and medium

dispersion states, while the low dispersion state decays to either of the other states with approximately

equal probability. Figure 4 plots the two-state filtered probabilities over the sample period for caps and

floors. The additional persistence of the floor regime is evident. For all of 2013 and most of 2014, the

dispersion measure due to floors stayed in the low-mean regime, while the dispersion of caps changed

regime several times. Visually, the transitions occur very quickly, while the states persist for a relatively

long time with a few exceptions, consistent with the estimated mean durations.
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Date Cap Event

Feb. 21, 2012 Down Euro zone finance ministers agree to bail out Greece.
Apr. 4-9, 2012 Up Draghi speech on downside risks; Fed forecasts less QE.
May 14, 2012 Down + Fed stress test results; Greek cabinet approves bailout.
July 26 - Aug. 3, 2012 Up Fed indicates slowing economy, potential future policy action.
Sept. 13, 2012 Spike Down FOMC, increase to QE.
Oct. 29, 2012 Down Hurricane Sandy (7th costliest disaster worldwide).
Jan. 2, 2013 Up US lawmakers avert fiscal cliff; Debt-ceiling crisis starts.
Jan. 31, 2013 Spike Down FOMC statement, Q4 contraction expected to be short lived.
Apr 16, 2013 Down No clear event.
Feb. 11, 2014 Up Oil price crash; Yellen says negative rates are not off table.
Mar. 19-21, 2014 Down Yellen says stimulus over by Fall, rate hike in early 2015.
Apr. 15-16, 2014 Up Fed Beige Book release and Yellen’s first speech.
Aug. 14-15, 2014 Down No clear event.
Apr. 15, 2015 Up Fed Beige Book.
May 26, 2015 Down Yellen: appropriate to raise interest rates within the year.
July 5, 2015 Down Day after Greek referendum on bailout.
Mar. 16-21, 2016 Up Fed monetary policy statement.
Apr. 19, 2017 Down Fed Beige book suggests rate increases.

Date Floor Event

Jan. 23, 2012 Down Greece negotiations. Fed forward guidance.
May 31, 2012 Up Weak US labor market and manufacturing data.
Aug. 10, 2012 Down Strong US labor market data.
Oct. 31, 2012 Up Hurricane Sandy (7th costliest disaster worldwide).
Nov. 14, 2012 Spike Up Weak US retail data, FOMC minutes published.
Dec. 1, 2014 Up Fall in oil prices.
Apr. 16, 2015 Down Rise in oil prices, ECB rate decision.
July 7-14, 2015 Up Weak US labor market data, oil price volatility.
March 2-4, 2016 Down US labor market and manufacturing data, increased oil prices.

Table 3: Economic events that coincident with breaks in the regime switching models for dispersion
based on pricing of a 1% cap option maturing in 1 year (top) and 1% floor options maturing in 1 year
(bottom). Notes: April 16, 2013 was the Tuesday after the Boston bomber. Equities dropped on Monday
but recovered on Tuesday. There is an unexplained break to high dispersion in early July 2013 and re-
turning to low dispersion in early August. In June of 2015, there were a few short lived switches, possibly
following developments in negotiations between Greece and the EU. There are several additional breaks
in July-Sept. 2016, which all coincide with Fed publication release dates.

3.2 A NARRATIVE VIEW OF REGIME CHANGE We next conduct a narrative study of events occurring

at the same time as transitions in the two state model for both caps and floors. We focus on the two

state model both for simplicity and because it is selected over the three period model by the Akaike

information criterion. Specifically, a break in the series is identified as a period over which the filtered

probabilities of the high dispersion state transition from values above 0.99 to below 0.01 or vice versa. A

typical break in the model occurs over a period of one to 6 business days, and with a few exceptions states
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persist for a month or more. The clear breaks and long lived states gives us a fair degree of confidence

that we are identifying events which do indeed lead to transitions, in response to the critique of Fair

(2002).

A search was conducted to identify any major economic news or policy developments which coin-

cided with a break in the series. Events of interest primarily occurred the day of or prior to either the

start of the break, as well as the day of or prior to any particularly large jump in the filtered odds. Table 3

displays the results of the study. The consistent timing of identified events relative to probability changes

gives us further reassurance in our interpretations.

As in Section 2.1, nearly every transition in the model relating to caps can be associated with a state-

ment by the Board of Governors of the Federal Reserve or its Chair, while transitions with respect to floors

are typically preceded by changes in structural economic performance (e.g., labor markets, oil prices).

There are only a few exceptions to this observation, in April 2013, August 2014, and October 2012, as well

as a high dispersion event which lasted through July of 2013. The former break happened shortly follow-

ing the bombing of the Boston marathon on Sunday, April 14, 2013. Markets reacted by turning sharply

downward the day following, and then recovering on the day of the break. The August 2014 event, on

the other hand, appears to possibly be misidentified. First, in Figure 4 the 2014 break corresponds to a

series drop from ≈ 0.014 to ≈ 0.013, which was followed by a further, more drastic fall in mid September.

The three state model identifies the first drop as a transition from High to Middle dispersion, and finds a

break from Middle to Low dispersion from September 17 to 19. The largest jump in the latter transition

occurred on September 18, accompanied by a decision by the FOMC to not raise interest rates. Finally,

the July 2013 event does not have a clear explanation, although there is some indication that investor

fears about the rollback of quantitative easing emerged at this time.

Looking more closely at the events associated with monetary policy, dispersion in the forward distri-

butions generally decreases when policy is relatively tight and increases when it is loose, as is sensible for

a period which saw persistently low inflation and stimulative policy. The series transitions several times

in the wake of statements by former Federal Reserve Chairwoman Janet Yellen, particularly in the weeks

following her swearing in on February 3, 2014. Late in the sample period, switches are more associated

with official Fed documentation, in particular the release of beige book summaries of economic condi-

tions. Not listed in the table are breaks on July 28, August 18, August 30, and September 8-13 of 2016;

each of these occurred in line with Fed releases and statements.

Early in the series history, breaks appear to be associated with actions by European leaders during

the debt crisis. This feature reemerges in mid-2015, the period during which Greece considered leaving

the European Union. Additional events associated with a transition include the oil price crash of 2014

and the day on which Hurricane Sandy made landfall in New York. The latter is notable as the second

costliest disaster in the United States at the time, following Hurricane Katrina,11 and the seventh costliest

worldwide.

11It has since been surpassed by Hurricane Harvey in 2017.
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3.3 A STRUCTURAL INTERPRETATION We now offer a structural interpretation of our results follow-

ing the model, calibration and solution strategy of Gavin, Keen, Richter, and Throckmorton (2015) and

Plante, Richter, and Throckmorton (2016). The model is (now) a well-known New Keynesian framework

used to study zero-lower bound constraints.

Households. Households choose consumption, labor and bond holdings to maximize expected life-

time utility, E0
∑∞

t=0 β̃t [logct −ξn1+η
t /(1+η)] where 1/η is the Frisch elasticity of labor supply, ct is con-

sumption, nt is labor hours, bt is the real value of a 1-period nominal bond, E0 is the expectation op-

erator and β̃t = ∏t
j=1β j for t > 0. β is a time-varying subjective discount factor that satisfies, βt =

β̃(βt−1/β)ρβ exp(εt ). The household’s budget constraint is ct +bt = wt nt + rt−1bt−1/πt +dt , where wt

is the real wage, πt = pt /pt−1 is the inflation rate, dt are profits of the intermediate firms, and rt is the

nominal interest rate set by the central bank.

Firms. The monopolistically competitive intermediate goods firms produce a continuum of differen-

tiated inputs and a representative firm produces a final good. Each intermediate firm f ∈ [0,1] pro-

duces a differentiated good yt ( f ) with identical technologies, yt ( f ) = zt nt ( f ), where nt ( f ) is the level

of employment used by firm f and zt represents the level of technology that is common across all

firms and follows, zt = z(zt−1/z)ρz exp(vt ). Each intermediate firm chooses labor supply to minimize

operating costs, wt nt ( f ) subject to its production technology. The final good firm purchases yt ( f )

units from each intermediate firm to produce the final good according to a Dixit-Stiglitz aggregator,

yt = [
∫ 1

0 yt ( f )(θ−1)/θd f ]θ/(θ−1), where θ > 1 is the elasticity of substitution between intermediate goods.

The firm’s optimality condition yields the demand function for intermediate inputs given by yt ( f ) =
(pt ( f )/pt )−θyt . Following Rotemberg, each firm faces a cost to adjusting its price, at ( f ), using the func-

tional form, at ( f ) = ψ[pt ( f )/(πpt−1( f )− 1]2 yt /2. Firm f chooses its price, pt ( f ), to maximize the ex-

pected discounted present value of real profits.

Monetary Policy. Each period, the central bank sets the gross nominal interest rate according to rt =
max{1,r?(πt /π)θπ(yt /y)θy }, where π is the inflation target and θπ and θy represent the extent of the pol-

icy response to inflation and the output gap. Thus, the central bank is subject to a zero-lower bound

constraint.

Solution and Calibration. The model is solved nonlinearly following a policy function iteration ap-

proach of Richter, Throckmorton, and Walker (2014). See Gavin, Keen, Richter, and Throckmorton (2015)

and Plante, Richter, and Throckmorton (2016) for a complete description of the model, solution method

and quarterly calibration.

Figure 5 reports the generalized impulse response function to a technology shock when the ZLB

binds (dashed) and when it does not (solid).12 The figure shows that there are qualitative differences

between the two scenarios with respect to the real interest rate and real wage rate. A technology shock

lowers the rate of inflation and—away from the ZLB—this prompts a decline in the nominal interest rate

through the policy rule. However at the ZLB, the nominal rate cannot go lower and the Fisher equation

adjusts through lower expected inflation, the real interest rate must increase to keep the nominal rate

12The ZLB binding case is achieved by initializing the economy at the average state vector conditional on the ZLB binding
in a 500,000 quarter simulation. The figure replicates Figure 8 of Gavin, Keen, Richter, and Throckmorton (2015).
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Figure 8: Model 1 (y∗t = ȳ) GIRFs to a 1% positive technology shock. The steady-state case (solid line) is initialized

at the model’s steady state. The ZLB case (dashed line) is initialized at the average state vector conditional on the ZLB

binding in a 500,000 quarter simulation.

targets potential output as opposed to a decline when it targets steady-state output. In addition,

output falls in 49.4% of the simulations used to compute a GIRF initialized at the ZLB with a

steady-state output target but only in 1.8% of the simulations with a potential output target.

Potential output rises and falls with technology while steady-state output remains unchanged.

When technology is below (above) its steady state, potential output is lower (higher) than steady-

state output. A positive (negative) technology shock generates the largest positive (negative) output

gap when the central bank targets steady-state output. That response raises the volatility of inflation

so inflation is less stable with a steady-state output target than a potential output target.

When technology is above steady state, it lowers inflation which causes the real interest rate to

rise at the ZLB. That higher real rate encourages households to reduce demand and save more.

Lower demand dampens the upward pressure on output from the decline in production costs.

Which effect dominates depends on whether the real interest rate rises enough to offset the positive

effects of higher technology. Given that the real interest rate is inversely related to the expected

inflation rate at the ZLB, the real interest rate rises less when the central bank targets potential

output since inflation is more stable. Therefore, output is higher and the economy will exit the
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Figure 5: Generalized Impulse Response Functions to Technology Shock: ZLB vs Non-ZLB

constant. This increase in the real rate has a negative impact on labor hours and the real wage. There-

fore, weakness in the labor market is correlated with a decline in the inflation rate. Consistent with this

intuition, Table 1 and Table 3 show that the price and dispersion of an inflation floor would increase

(decrease) with weakness (strength) in the labor market. Oil price movements also triggered substantial

changes in prices of floors over this time period. While we do not model the oil market, one could think

of it as an input good similar to labor. As the real wage increases under the ZLB, the inflation rate also

increases. Thus a positive oil price shock would cause an expected increase in inflation and the price of

floors would decline, consistent with Tables 1 and 3.
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Figure 3: Generalised impulse responses to a 2 standard deviation positive shock at and away from the ZLB. The

steady-state simulation (solid line) is initialised at the stochastic steady state. The other simulation (dashed line) is

initialised at the filtered state corresponding to 2008Q4. The vertical axis is the percentage change in real GDP growth

(or difference in uncertainty) from the baseline simulation. The horizontal axis displays the time period in quarters.

the drop in real GDP growth is damped by the monetary policy response. There is little change in

uncertainty because households expect future shocks will have the same effect on real GDP regard-

less of the state of the economy. When the ZLB binds, however, the central bank cannot respond

by lowering its policy rate, which leads to larger declines in real GDP. In that case, uncertainty

sharply increases since households expect a wider range of future realisations of real GDP growth.

A positive productivity growth shock lowers the marginal cost of production, which causes

firms to increase output, regardless of whether the ZLB binds. The central bank responds to the

higher real GDP growth by increasing its policy rate. The shock has little effect on uncertainty

when the economy begins in steady state but slightly decreases in the deep ZLB state, since the

higher policy rate reduces the constraint on monetary policy. Similarly, a positive monetary policy

shock raises the policy rate and reduces the likelihood of remaining at the ZLB. Therefore, there is

a small decrease in uncertainty in the deep ZLB state, but in this case real GDP growth declines.

A comparison of the responses of real GDP growth suggests that when the ZLB does not bind

productivity shocks have the largest influence on economic activity. They not only produce the

biggest impact but are also the most persistent. In a deep recession that drives the policy rate to

zero, however, discount factor shocks play a much more important role than in the pre-ZLB period.

4.2 ESTIMATES OF UNCERTAINTY We generate the path of real GDP growth uncertainty pre-

dicted by the model by filtering the data at the posterior mean. Figure 4a plots that estimated path

on the right axis (dashed line) along with a time series of per capita real GDP growth on the left

axis (solid line). The two time series provide an estimate of the periods when uncertainty was

elevated and an illustration of their historical relationship. The shaded area shows the ZLB period.

There are two key takeaways from our estimates. One, uncertainty about future real GDP
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Figure 3: Generalised impulse responses to a 2 standard deviation positive shock at and away from the ZLB. The

steady-state simulation (solid line) is initialised at the stochastic steady state. The other simulation (dashed line) is

initialised at the filtered state corresponding to 2008Q4. The vertical axis is the percentage change in real GDP growth

(or difference in uncertainty) from the baseline simulation. The horizontal axis displays the time period in quarters.

the drop in real GDP growth is damped by the monetary policy response. There is little change in

uncertainty because households expect future shocks will have the same effect on real GDP regard-

less of the state of the economy. When the ZLB binds, however, the central bank cannot respond

by lowering its policy rate, which leads to larger declines in real GDP. In that case, uncertainty

sharply increases since households expect a wider range of future realisations of real GDP growth.

A positive productivity growth shock lowers the marginal cost of production, which causes

firms to increase output, regardless of whether the ZLB binds. The central bank responds to the

higher real GDP growth by increasing its policy rate. The shock has little effect on uncertainty

when the economy begins in steady state but slightly decreases in the deep ZLB state, since the

higher policy rate reduces the constraint on monetary policy. Similarly, a positive monetary policy

shock raises the policy rate and reduces the likelihood of remaining at the ZLB. Therefore, there is

a small decrease in uncertainty in the deep ZLB state, but in this case real GDP growth declines.

A comparison of the responses of real GDP growth suggests that when the ZLB does not bind

productivity shocks have the largest influence on economic activity. They not only produce the

biggest impact but are also the most persistent. In a deep recession that drives the policy rate to

zero, however, discount factor shocks play a much more important role than in the pre-ZLB period.

4.2 ESTIMATES OF UNCERTAINTY We generate the path of real GDP growth uncertainty pre-

dicted by the model by filtering the data at the posterior mean. Figure 4a plots that estimated path

on the right axis (dashed line) along with a time series of per capita real GDP growth on the left

axis (solid line). The two time series provide an estimate of the periods when uncertainty was

elevated and an illustration of their historical relationship. The shaded area shows the ZLB period.

There are two key takeaways from our estimates. One, uncertainty about future real GDP
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Figure 6: Generalized Impulse response function to Discount Factor Shock: ZLB(dashed) vs Non-ZLB

Figure 6 reports the impulse response to a discount factor shock at the ZLB (dashed) and away from
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the ZLB (solid). Panel (a) shows that output falls substantially more as the monetary authority is con-

strained. Panel (b) shows that uncertainty, defined as time-variation in second moments (
p

E t (σ2
t+1)).

Plante, Richter, and Throckmorton (2016) refer to this as endogenous uncertainty and show that a con-

strained monetary authority is unable to effectively respond to future shocks, which leads to an increase

in household uncertainty, shown in Panel (b). Plante, Richter, and Throckmorton (2016) also show how

this uncertainty extends to inflation. To summarize, the model shows how the ZLB leads to an increase

in uncertainty in inflation and how the downside risks of inflation are more likely. These two forces

combine to make the price of floors more volatile relative to caps at any given strike price.

3.4 CONNECTION TO MEASURES OF UNCERTAINTY Recently, several measures of uncertainty have

been shown to be important drivers of business and financial cycles [Jurado, Ludvigson, and Ng (2015),

Baker, Bloom, and Davis (2016)]. In this section, we examine the extent to which three such measures—

financial, macro and policy—are able to explain the variation in dispersion of inflation expectations.

Before turning to our regression analysis, we first document correlation between our dispersion mea-

sure and other measures of uncertainty. We focus on three such measures—VIX, dispersion in the Survey

of Professional Forecasters inflation forecast, and the investor sentiment of Baker and Wurgler (2006).

Comparison with the VIX is useful because it represents a measure of uncertainty available at the same

frequency as our measure—daily. Our dispersion measure positively correlates with the VIX over our

sample, with a correlation coefficient of 0.586, suggesting that our metric is picking up many of the same

events that move the stock market. While a useful measure of uncertainty, the VIX cannot distinguish

between shocks that increase/decrease expected inflation. In order to compare our dispersion measure

to the SPF and the investor sentiment of Baker and Wurgler (2006), we take a monthly average. At this

frequency, dispersion is positively correlated with SPF dispersion and weakly correlated with investor

sentiment at 0.49 and 0.19, respectively. Despite the lack of a strong correlation, we believe our mea-

sure has value added relative to these other metrics due to its higher frequency and ability to identify

directional changes in inflation expectations.

As described in Ludvigson and Ng (2019), the financial uncertainty measure is constructed from 148

monthly financial series that consists of a number of indicators “measuring the behavior of a broad cross-

section of asset returns, as well as some aggregate financial indicators. These data include valuation ra-

tios such as the dividend-price ratio and earnings-price ratio, growth rates of aggregate dividends and

prices, default and term spreads, yields on corporate bonds of different ratings grades, yields on Trea-

suries and yield spreads, and a broad cross-section of industry equity returns." The “Macro" uncertainty

measure is compiled from a database of 135 monthly U.S. indicators, taken from FRED-MD and de-

scribed in McCracken and Ng (2014). These data included industrial production, weekly hours, personal

inventories, monetary aggregates, interest rates and interest-rate spreads, stock prices, and consumer

expectations. In both cases, the uncertainty measure taken from Jurado, Ludvigson, and Ng (2015) is the

h-period ahead uncertainty in the variable y j t defined as the conditional volatility of the purely unfore-

castable component of the future value of the series,

U j t (h) ≡
√

E [(y j t+h −E [y j t+h |It ])2|It ]
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where It is the information available to the economic agents at t and is formulated according to a dy-

namic factor analysis. The large set of predictors described above are used to span the information set

of the agent, while the volatility in the forecast error is estimated using a parametric stochastic volatility

model. For further details see Jurado, Ludvigson, and Ng (2015).

We also examine the three-component policy uncertainty index of Baker, Bloom, and Davis (2016).

The first component consists of monthly search results from 10 large newspapers with keywords ‘un-

certainty’ or ‘uncertain’, the terms ‘economic’ or ‘economy’ and one or more of the following terms:

‘congress’, ‘legislation’, ‘white house’, ‘regulation’, ‘federal reserve’, or ‘deficit’. The second component

of the index compiles a list of temporary federal tax code provisions as reported by the Congressional

Budget Office, the idea being that “temporary tax measures are a source of uncertainty for businesses

and households because Congress often extends them at the last minute, undermining stability in and

certainty about the tax code." The final component is a measure of dispersion in the individual level

forecasts of variables directly influenced by government policy (e.g., purchases of goods and services by

the federal government) contained in the Federal Reserve Bank of Philadelphia’s Survey of Professional

Forecasters.

Variable Mean Std. Dev. Min Max

Canon. (Cap) 0.013 0.002 0.010 0.016 Correlation
Canon. (Floor) 0.019 0.006 0.015 0.045 h=1 h=3 h=12 Macro Policy

Fin. (h=1) 0.796 0.052 0.680 0.920 1.00 0.98 0.97 0.32 -0.01
Fin. (h=3) 0.856 0.043 0.760 0.958 1.00 0.98 0.34 0.00
Fin. (h=12) 0.950 0.016 0.912 0.988 1.00 0.40 0.04
Macro. 0.750 0.031 0.700 0.813 1.00 0.03
Policy 0.119 0.033 0.072 0.195 1.00

Table 4: Summary Statistics for Uncertainty and Dispersion Measures

Table 4 reports the descriptive statistics for the dispersion measures used in the regression analy-

sis, along with the uncertainty measures. We scaled the policy uncertainty measure by 1/100 to place

it roughly on the same scale as the dispersion statistics. The data are monthly observations from Jan-

uary 2012 through May 2017 (N = 65). For the financial uncertainty measure, we include three forecast

horizons (h = 1,3,12), even though these measures are highly correlated. Our dispersion statistics are

derived from one-year ahead strikes h = 12 and we want to test if the timing is relevant. Also noteworthy

is the lack of correlation between the financial / macro uncertainty measures and the policy uncertainty.

Meanwhile, the macro and financial uncertainty measures are weakly positively correlated.

Table 5 presents the results of our regression analysis. We regress the uncertainty measures on floor

and cap dispersion separately to investigate if floors and caps can be explained by different measures of

uncertainty as suggested in Section 3.2. First note that financial uncertainty measures are statistically

significant predictors of dispersion in both caps and floors, increasing in significance and magnitude as

the horizon increases. That the most significant and sizable response comes from the one-year horizon

(h = 12) should not be a surprise given that the options in Table 5 are all evaluated at strikes of one-
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Dependent Variable: Floor-Dispersion

Fin. (h=1) 0.047***
(0.013)

Fin. (h=3) 0.058***
(0.016)

Fin. (h=12) 0.161*** 0.102*
(0.041) (0.041)

Macro. 0.101*** 0.079***
(0.021) (0.022)

Policy 0.016
(0.010)

Constant -0.018 -0.030* -0.133*** -0.06*** 0.017** -0.136***
(0.011) (0.014) (0.041) (0.016) (0.020) (0.035)

R2 0.165 0.175 0.200 0.272 0.01 0.339

Dependent Variable: Cap-Dispersion

Fin. (h=1) -0.011**
(0.003)

Fin. (h=3) -0.014**
(0.004)

Fin. (h=12) -0.034** -0.024*
(0.011) (0.011)

Macro. -0.018** -0.013*
(0.006) (0.006)

Policy 0.007
(0.006)

Constant 0.022*** 0.025*** 0.046*** 0.027*** 0.012*** 0.046***
(0.003) (0.004) (0.011) (0.004) (0.000) (0.010)

R2 0.154 0.150 0.135 0.137 0.02 0.194

Table 5: Regression Analysis

year. Note also that the policy uncertainty metric is not significant for either caps or floors, while the

financial uncertainty remains significant and macro uncertainty is also significant. Moreover, financial

uncertainty enters negatively for cap dispersion and positively for floor dispersion. Thus, an increase in

financial uncertainty decreases the dispersion in caps. Recall that over this time period, disinflation was

more of a concern than inflation which is why innovations to financial time series, on average, consoli-

dated expectations in inflation caps while increasing dispersion in inflation floors. Finally, the R-square

associated with macro uncertainty is significantly higher for the floor dispersion relative to the cap (0.272

vs 0.137), which is consistent with our narrative.

4 CONCLUSION

The frequency and richness of financial markets data makes it an attractive resource for market partic-

ipants and policy making institutions, however linking asset price fluctuations to investor perceptions

remains a difficult topic. While forward distributions for inflation implicit in cap and floor prices need

not provide a direct measure about investor perceptions regarding the actual likelihood of events, we

have argued that dispersion in these distributions may nonetheless provide a sense of broad uncertainty.
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Having adapted the method of Buchen and Kelly (1996) and Stutzer (1996) to back out such distributions

from prices, we have shown that changes in the level and volatility of dispersion can be captured by a

simple regime switching model. Exploiting the daily frequency of the data and the cleanliness of the

breaks in the model, we have been able to closely link these breaks to Federal Reserve policy and major

global and domestic sources of uncertainty. At a monthly frequency, we have shown that our dispersion

metric is also linked to nascent measures of economic and financial uncertainty.
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5 APPENDIX A: DERIVATIVE METHOD

This method is based on the well known result that the second derivative of the price of a call option with

respect to the strike delivers the risk-neutral density [Breeden and Litzenberger (1978), Ross (1976)]. To

that end, let Vt denote the time t price of an option linked to the annual inflation rate πt ,t+h from time t

to time t +h measured in years. Let p∗ denote the time t forward probability density for πt ,t+h . Then Vt

satisfies the pricing formula

Vt = Bt ,t+h

∫ ∞

−∞
p∗(π)Vt+h dπ (7)

where we follow Kitsul and Wright (2013) in discounting by an h year zero coupon bond Bt ,t+h taken

from Gurkaynak, Sack, and Wright (2007). In particular, for an inflation cap of strike rate k and a one-

year horizon, the value at time t +1 is the expiry payoff, giving

Vt = Bt ,t+1

∫
p(π)max

[
(1+π)− (1+k),0

]
dπ

= Bt ,t+1

∫ ∞

k
p(π)

[
(1+π)− (1+k)

]
dπ (8)

Differentiating twice with respect to k, we obtain

∂Vt

∂k
=−Bt ,t+h

∫ ∞

k
p(π) dπ

∂2Vt

∂k2 = Bt ,t+h p(k)

Hence, given prices for inflation caps with several different strikes on a given date, we can back out

an implied forward cumulative distribution P and the corresponding density p at values of annualized

inflation in the range covered by these strikes by using the prices to estimate the above derivatives and

setting

P (k) = 1+ 1

Bt ,t+h

∂Vt

∂k
(9)

p(k) = 1

Bt ,t+h

∂2Vt

∂k2 (10)

An analogous argument allows us to derive these objects from a collection of inflation floor prices.13

13With horizons longer than one year, the expressions are more complicated, namely

∂Vt

∂k
=−h(1+k)h−1Bt ,t+h

∫ ∞

k
p(π) dπ

and

∂2Vt

∂k2
=−h(h −1)(1+k)h−2Bt ,t+h

∫ ∞

k
p(π) dπ+h(1+k)h−1Bt ,t+h p(k)
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As observed in Aït-Sahalia and Duarte (2003), the requirements

0 ≤ P (k) ≤ 1, p(k) ≥ 0 (11)

combine with equations (9) and (10) to place sign and magnitude restrictions on the derivatives of the

strike price curves. Financial market imperfections may result in these conditions being violated, with

the consequence that the derived probability functions will be mathematically insensible. To address

this issue, Aït-Sahalia and Duarte (2003) employ the algorithm of Dykstra (1983) to provide a method

for minimizing the squared distance between the observed curves and the set of those which obey the

constraints.

Since we only have prices {Vt (ki )} for a finite selection of strikes ki , i = 1, ...,n at each date, obtain-

ing the derivatives in (9) and (10) is accomplished through local polynomial smoothing. This method,

proposed in Aït-Sahalia and Duarte (2003) and applied to inflation options in Kitsul and Wright (2013),

constructs Taylor coefficients for the price-strike curve of the options at each possible strike value by

weighted least squares. In particular, for each strike k the objective of this problem is to choose coeffi-

cients β j (k) to minimize

n∑
i=1

[
Vt (ki )−

p∑
j=0

β j (k)(ki −k) j

]2

Kw (ki −k) (12)

where Kw is the weighting function. The derivatives of interest can subsequently be determined at each

k from the estimated β j (k).

The main advantage of the above procedure is that it derives empirical distributions directly from the

underlying economic theory using all available information. There are two main disadvantages. First,

the method requires selection of a bandwidth parameter b for the weighting function Kw . While the

literature proposes using an estimate of the asymptotic optimum (see Aït-Sahalia and Duarte (2003) and

Fan and Gijbels (1996)), in practice one must take care to not under-smooth or over-smooth. Second,

this method will also provide poor estimates of the forward distribution outside of the strike rates which

were traded on a given day.

The former difficulty becomes an issue of practical importance in the latter half of our option price

sample. Specifically, the number of strike rates being traded declines, so that estimated asymptotically

optimal bandwidth does not sufficiently smooth between neighboring observations, resulting in severely

multimodal estimated distributions or a break down of the method altogether. To adjust the bandwidth

away from the theoretical optimum in a parsimonious way in our application below, we take the mini-

mum bandwidth for which the distribution is unimodal.

To address the latter difficulty, we incorporate data from both cap and floor options on each date in

order to construct a distribution over the widest range of inflation rates possible. Specifically, on a typical

date there is price data available for caps of strikes kC
1 , ...,kC

m and floors of strikes kF
1 , ...,kF

n , where kF
1 < kC

1

and kF
n < kC

m , but kF
n > kC

1 . In particular, the last inequality implies that there are strike rates for which

prices of both a cap and a floor are available, say kC F
1 , ...,kC F

`
. Since the implied forward distributions

24



need not agree in the overlapping region, we compute the distribution function F (k) at such a point by

linearly interpolating as follows. Denoting the floor-implied distribution function as G(k) and the cap-

implied distribution as H(k), we set δ= (k −kC F
1 )/(kC F

`
−kC F

1 ) and

F (k) = (1−δ)G(k)+δH(k) (13)

The strike-price curve estimated by applying constrained least squares and smoothing to five year

inflation floors with strikes between -3% and 3% is shown in Figure 7. In contrast to the theory described

above, the observed strike price curve on this date displays a non-convexity at strike rate -0.5%. This

feature is smoothed over in the constrained least squares nearest neighbor, while the smoothed curve

sits noticeably above the observed prices between strikes of 0% to 2.5%.
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Figure 7: Observed, constrained, and smoothed strike-price curve for floors on five year inflation on May
18, 2015.

Figure 8 compares the forward cumulative distribution functions obtained from the Canonical and

Derivative methodologies. Figure 8a and 8b plot the maximum and mean difference in the forward CDFs.

We used the price of a one year cap with strikes of 1% and 2%, and a one year floor with a strike of 1% as

constraints in the Canonical valuation. There are no clear trends in the figures, nor are there a significant

number of outliers.

Figures 8c and 8d plot the one-year-ahead inflation on January 15, 2014 and January 13, 2015, ob-

tained using each of the two methods described above for inflation caps and floors. The empirical distri-

bution for post-1985 inflation, which is used in the application of Stutzer (1996)’s method, is plotted as
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(a) Maximum Difference (b) Mean Difference

(c) Forward CDF Jan. 15, 2014 (d) Forward CDF Jan. 13, 2015

Figure 8: Forward cumulative distribution functions obtained using the Canonical and Derivative
methodologies.

well. These dates are of particular interest because they represent a period in which the one-year-ahead

forward rate is roughly consistent with current levels of inflation (January 15, 2014) and a date in which

market beliefs suggest substantial deviation from current inflation (January 13, 2015). The figure shows

that the approaches have substantial overlap during both periods (with the exception of the far left tail

for January 13, 2015). We take this as prima facie evidence that our methodologies are broadly consistent,

with additional evidence provided below.
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