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Abstract
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a preference for temporal allocations. We demonstrate the usefulness of wavelets by highlighting
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to wavelet applications of financial data, we are unaware of papers that use wavelets to analyze
structural aspects of asset pricing models.
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1 Introduction

Time non-separable utility functions have seen increasing use in economics and finance. They have

been shown to improve empirical fit in macroeconomic models [Christiano, Eichenbaum, and Evans

(2005)], explain financial anomalies [Campbell and Cochrane (1999), Bansal and Yaron (2004)] and

have solid microfoundations [Epstein and Zin (1989), Szeidl and Chetty (2005)].

The time non-separable nature of the utility function implies that agents care not only about

the volatility of consumption but also the temporal composition of that volatility. Is volatility

resolved sooner or later? With standard separable utility functions, agents answer this question

with indifference. However, when utility is time non-separable it matters a great deal as to when

the uncertainty is resolved. Under habit formation utility with standard preferences, agents prefer

lower frequency fluctuations in consumption. They are even willing to tolerate more volatility as

long as that volatility is distributed toward the lower end of the spectrum. Conversely, agents with

Epstein-Zin (EZ) recursive utility have a preference for higher frequency fluctuations. Long-run

risk carries a high price with EZ preferences and a much lower price with habit formation.

The Fourier transform is ideally suited to identify these differences in utility specifications.

Whiteman (1985) was the first to show how frequency domain decompositions can be useful in

understanding the temporal composition of volatility. Fourier decompositions of the utility func-

tion, coupled with isolating certain frequencies of the stochastic consumption process, will reveal

the extent to which the preference for early / late resolution interacts with the properties of the

consumption process. Standard time series techniques known to economists are not particularly

useful for isolating these important properties (e.g., impulse response functions).

The main contribution of the paper is a wavelet-based decomposition of the stochastic discount-

ing factor. Specifically, we address the question: What are the theoretical restrictions imposed by

preferences on asset pricing models in the time-scale (or frequency) domain?1

With the tool of maximal overlap discrete wavelet transform (MODWT) multi-resolution anal-

ysis (MRA), we extend the analysis of Fourier transforms to recursive preferences. Much of the

work in the asset pricing literature applies to models with habit formation [e.g., Otrok, Ravikumar,

and Whiteman (2002)], few papers examine recursive preferences, and fewer still study spectral

properties of these models.2

We use wavelets to study the properties of time non-separable utility. Unlike Fourier transforms,

wavelets are able to isolate frequency and time, simultaneously. We conduct a simulation exercise to

demonstrate the usefulness of the Fourier and wavelet transforms in asset pricing settings (Sections

1We thank an anonymous referee for highlighting this contribution.
2Recent exceptions include Dew-Becker and Giglio (2016), which will be discussed more below; Ortu, Tamoni,

and Tebaldi (2013), who perform a persistence-based decomposition of the log consumption growth process across
time-scales; Bandi and Tamoni (2016) demonstrate that the spectral component corresponding to business cycle
frequencies explains cross-sectional differences in asset prices; Boons and Tamoni (2016) examine the importance
of macro volatility components with persistence greater than business cycle frequency in determining asset prices;
Xyngis (2016), examines multi-resolution analysis of macroeconomic uncertainty; Xyngis (2017) demonstrates that
macroeconomic shocks with frequencies lower than the business-cycle are not robustly priced in the cross-section of
expected returns; and Kang, In, and Kim (2017) found that among all the scale components of the of the Fama-French
(FF) three factors, the cycle period of 8-16 months explained the most variation in expected cross-sectional returns.
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2 and 4). As wavelet analysis is not ubiquitous in economics, we provide a brief introduction in

Section 3. This serves to fix notation and lays the foundation for the remainder of the paper. Section

5 contains our empirical application. We follow the decomposition of the stochastic discount factor

found in Dew-Becker and Giglio (2016), which assumes the underlying stochastic process can be

summarized by a vector autoregression. We then perform a discreet wavelet transform of both the

data and utility specification, which is our primary contribution. Comparing the two tells us how

the different utility specifications price risk. The low frequency movements are much more costly

when preferences are of the recursive type as opposed to habit formation.

2 Time Non-Separable Utility

We examine the two most popular time non-separable utility functions: habit formation, which

dates back at least to Pollak (1970), and the recursive preference structure of Epstein-Zin (EZ)

utility (1989), which is built on a Kreps-Portus framework. Contemporaneous utility with a habit

formation specification is given by

ut :=
(Ct −Xt)

(1−γ)

1− γ

where Ct is the consumption level at time t, and Xt :=
∑K

i=1 biCt−i is the influence of past con-

sumption on the current level of utility. The parameters γ ∈ (0, 1), K ∈ Z+ and bi > 0, i = 1, 2...,K

determine the risk aversion and the extent to which past consumption alters today’s utility. For

example, when K = 1, the more a person consumes at t than at t − 1, the more he/she has to

consume at t+ 1 than at t in order to attain the same level of utility.3

EZ preferences do not directly model the temporal utility ut, but instead, model the life-time

utility Ut recursively:

Ut =

{
(1− β)C1−ρ

t + β
(
Et
[
U1−α
t+1

]) 1−ρ
1−α

} 1
1−ρ

where β ∈ (0, 1) is the subjective discount factor, ρ is the inverse of the intertemporal elasticity of

substitution (IES), and α is the risk aversion coefficient. Having a separation between risk aversion

and the elasticity of substitution is a key benefit of EZ preferences.

We work within the context of the ubiquitous asset pricing model of Lucas (1978), where the

equilibrium equates the price of the asset at time t to its discounted expected return at t+ 1,

pt = βEt
[(

u′(Ct+1)

u′(Ct)

)
(pt+1 + dt+1)

]
(1)

pt is the price, u′(·) is marginal utility, and d is the dividend of the asset (equal to the endowment

3Habit formation preferences can take alternative forms. For example, Xt is sometimes defined as the average
consumption of all agents, Xt :=

∑K
i=1 biC̄t−i, giving the contemporaneous utility function the interpretation of

“Keeping up with the Joneses.” Our focus here is on the temporal nature of these preferences and in that regard, the
alternative habit specifications all maintain the same feature.

2
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in the original setup of Lucas (1978)). Following the usual convention, we define the stochastic

discount factor (SDF) as Mt+1 = βEt(u′(Ct+1)/u′(Ct)).

Whiteman (1985) was the first to demonstrate how frequency domain analysis could be used to

provide important insights on the time non-separable behavior of utility. Particularly, he showed

that the timing of uncertainty would not be constant under these alternative preferences, a point

cleanly made in the frequency domain. As such, consider a thought experiment similar to that of

Otrok, Ravikumar, and Whiteman (2002).4

1. Let ct be the log consumption at time t, ct = ln(Ct), and generate N = 1, 000 samples of

T = 2, 000 draws from the stochastic i.i.d log consumption series {ct}2000
t=1 ,

Ct = eNorm(− 1
2
σ2, σ2), t = 1, 2, · · · , 2000.

Note that the normal distribution is constructed in such a way that no matter how the

variance is changed, the mean of the consumption is always one.

2. Decompose each sample series into 32 frequency component series using a band-pass filter

bj(L), where the jth component has a frequency range of
[
j−1
32 · 1

2 ,
j
32 · 1

2

]
. This delivers

bj(ω) = 1 for ω ∈ [jπ/32, (j + 1)π/32] for j = 0, 1, ..., 31 and zero otherwise.

3. Calculate utility frequency-by-frequency for each consumption simulation5

Un(j) =
∑T

t=1 β
tu(bj(L)cn,t), taking the average of life-time utility for each frequency range,

E(U(j)) = (1/N)
∑N

n=1 Un(j). That is, take each simulation (T = 2, 000 draws) and calculate

lifetime utility, then average this lifetime utility over the N = 1, 000 samples to get the

expected value.

Figure 1: Spectral Utility for Time Separable and Habit Utility

Figure 1 is taken from ORW and plots the results of the computational exercise for habit-

formation utility (Ct−Xt)(1−γ)
1−γ with Xt = δCt−1, δ = −0.615, β = 0.955, γ = 0.8, and standard

4We appreciate the comment of an anonymous referee that “raised a slight objection with this approach because
it ignores the dynamics of the consumption process across time-scales.” Ortu, Tamoni, and Tebaldi (2013) has shown
that actual consumption dynamics are richer than our simulation suggests.

5Spectral utility is a phrase coined by Whiteman (1985) and refers to frequency decomposition of utility.

3
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time-separable utility (δ = 0). The variance of the consumption process is set to 0.0104.6 The

figure shows utility plotted against different frequencies. With time-separable preferences (Figure

1a), agents are indifferent between fluctuations at different frequencies. As long as volatility remains

the same, agents have no preference as to the temporal nature of that volatility. This is not true with

habit formation (Figure 1b). Under this preference structure, agents would prefer volatility with a

temporal distribution concentrated at lower frequencies. The intuition follows from the idea that

last period’s consumption enters agents’ contemporaneous utility with habit formation. Volatility

with higher (lower) frequency makes it more (less) difficult to smooth consumption across periods.

Agents would even prefer a higher overall level of volatility as long as the temporal distribution of

that volatility was shifted towards the lower end of the spectrum. In other words, low frequency

fluctuations in consumption make it easier to support habit formation.

The goal of this paper is to extend this type of analysis through the use of wavelets. As will

become clear, wavelets have clear advantages vis-a-vis traditional frequency domain analysis that

are particularly beneficial in this context. As wavelets are less ubiquitous, we first provide a brief

introduction.

3 Introduction to Wavelet Analysis

In this section, we give a simple, intuitive introduction to discrete-time wavelet analysis. Interested

readers should consult Percival and Walden (2006) for a more thorough explanation for both the

discrete and continuous cases.

Consider the discrete-time signal in Figure 2, which contains three distinct periods of oscilla-

tions. While standard Fourier analysis is able to locate frequency and thus will distinguish amongst

the three types of oscillations, it loses information along the time dimension. It is not designed to

discriminate when these changes in oscillations occur. Wavelets, conversely, can locate these three

fluctuations along the time-frequency domain.

3.1 Wavelets A discrete wavelet refers to a real bounded sequence {wt}t∈Z with the following

properties

• The term wt is zero when t is outside a certain range I. That is,

wt = 0, when t /∈ I = [a, b]
⋂

Z,

where a < b are two real numbers.

• The graph of {wt}t∈I is a wave-like oscillation with a certain frequency (range).

• The sum of all the terms is 0,
∑

t∈Zwt =
∑

t∈I wt = 0.

6As stated in Otrok, Ravikumar, and Whiteman (2002), the calibrated parameter values reproduce the average
equity premium and risk-free rate over the period 1889-1992.

4
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Figure 2: A Hypothetical Signal

Figure 3 is an example of a discrete wavelet {wt} and its Discrete Fourier Transform F (f) :=∑
t∈Zwte

−i2πft. From the graph, we can see that

wt ≈ 0, if t /∈ I = {18, 19, · · · , 30};
F (f) ≈ 0, if |f | ∈ [0, 0.5] and |f | /∈ [0.25, 0.5].

This particular wavelet has a time support of I, where its oscillation frequency approximately lies

in the range of [0.25, 0.5].

One important use of wavelets is to measure the power of oscillations in the time-scale domain,

where a scale is a frequency range. We use this example wavelet {wt} to illustrate how this can be

achieved. First we define the inner product of any two real square-summable time series {xt}t∈Z
and {yt}t∈Z as:

〈xt, yt〉 :=
∑
t∈Z

xt · yt.

With this operation, we claim that 〈wt, xt〉 implies the power of the oscillations of {xt} with

frequency f ∈ [0.25, 0.5] in the time range of t ∈ I = [18, 19, ..., 30]. To understand this claim

intuitively, look at the two given signals in the Figure 4, where

gt =


sin(2π · (1/16)t) t ∈ 1, 2, · · · , 17;

sin(2π · (3/8)t) t ∈ 18, 19, · · · , 30;

sin(2π · (1/16)t) t ∈ 31, 32, · · · , 50;

0 otherwise.

and ht =


sin(2π · (3/8)t) t ∈ 1, 2, · · · , 17;

sin(2π · (1/16)t) t ∈ 18, 19, · · · , 30;

sin(2π · (3/8)t) t ∈ 31, 32, · · · , 50;

0 otherwise.

According to the construction of the two given signals, within the time interval of I, the oscil-

5
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Figure 3: An example of a wavelet

lation frequency in {ht} is 1/16 /∈ [0.25, 0.5] and the one in {gt} is 3/8 ∈ [0.25, 0.5]. Therefore, in I,

the oscillations in {ht} with frequency in [0.25, 0.5] has no power, and the oscillations in {gt} with

frequency in [0.25, 0.5] has a significant power. The inner products tell us the same thing:

〈wt, gt〉 =
∑
t∈Z

w(t)g(t) = 1.2729,

〈wt, ht〉 =
∞∑

t=−∞
wtht = 0.022.

From this illustration we can see that a wavelet with a oscillation frequency range F and support

in the time interval I can be used to determine the power of oscillation of a given signal, in the

frequency range F and time interval I. So it is similar to the windowed Fourier transform, but

the discrete wavelet transform, which is introduced in the following, has the advantage of adaptive

scale-time resolutions.

6
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Figure 4: The example wavelet and two given signals

3.2 Discrete Wavelet Transform Given any time series {xt} with real values, the Discrete

Wavelet Transform (DWT) describes the powers of its oscillations in the time-scale domain, using

a set of wavelets. Each of these wavelets has a unique frequency range and a time support, so the

corresponding inner product describes the power of oscillations in {xt} with a distinct frequency

range and a time period. For the set of wavelets used in the DWT, we have many options. One

option is the popular Daubechies wavelets. In this paper, we will use the set of wavelets constructed

with the Daubechies Least-Asymmetry(8) filters. Using these wavelets, the DWT algorithm outputs

the inner product of them with any given finite-length signal {xt}2Nt=0:

{Wj,k}2
N−j−1
k=0 , j = 1, 2, ..., J and {VJ,k}2

N−j−1
k=0

where

• Wj,k is called a wavelet coefficient and it roughly describes the power of the oscillations in

{xt} in the time period of [2j(k − 2), 2j(k − 1)] with a frequency range of [2−(j+1), 2−j ]. 7

7Note that there are delays in the events in {Wj,k}k, comparing to the time line of {xt}. For a detailed discussion

7
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• The frequency range [2−(j+1), 2−j ] is also called the jth scale.

• VJ,k is called the scaling coefficient and it describes the power of the oscillation of {xt} in the

time period of [2J(k − 2), 2J(k − 1)] with a frequency range of [0, 2−(J+1)].

• J ≤ N is a positive integer determined by us.

If we stack these results in vectors, we get

~w1

~w2

...

~wJ

~vJ


where ~wj =


Wj,0

Wj,1

...

Wj,2N−j

 and ~vJ =


Vj,0

Vj,1
...

Vj,2N−J



Notice that ~wj contains the powers of the components in the same scale. Also, the number of

wavelet coefficients in ~wj decreases as j increases. This is because as j increases, Wj,k describes

the oscillations with a higher scale and longer time support. To be more specific, the length of

[2j(k− 2), 2j(k− 1)] which is the time period that Wj,k corresponds to, increases with j. Since the

given time series has a fixed time length of 2N , the number of its scale-j components decreases as

j increases.

Next, we give an example of the application of DWT (color plot). The following is an example

of applying DWT to a given signal. The results are presented with a color plot.

50 100 150 200 250

t
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0

1

2

 xt

Scalogram for DWT of x t

Scale 1

Scale 2

Scale 3

Scale 4

Scale 5

50 100 150 200 250

t

0

0.02

0.04

0.06

0.08

Figure 5: A signal and the color plot of its DWT results

please refer to Section 4.11 in Percival and Walden (2006).

8
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The color plot is on a time-scale plane. Each wavelet coefficient Wj,k corresponds to a block.

For the corresponding time-scale component in {xt}, the width of the block reflects its length in

time (so that as scale increases, each block becomes wider), the height of the block reflects the

scale, and the brightness of the color reflects the power of the component. The legend on the right

of the color plot explains the power of each color. For example, the yellow color indicates a power

percentage of 8%, and a green color indicates a power percentage around 6%. It can be seen that

the color plot captures in the time-scale domain the powers of different components of the signal

above it.

3.3 DWT Algorithm with Matrix Operations If we stack the scale-j wavelets used by

DWT to form a matrix Wj and write the signal {xt}2
N−1
t=0 into a vector X = [x0 x1 x2 · · ·x2N−1]T ,

the scale-j wavelet coefficients ~wj can be obtained by:

~wj =WjX, j = 1, 2, ..., J.

Similarly, we have

~vJ = VJX.

Also, the original signal X can be recovered from the DWT coefficients,

X =

N∑
j=1

WT
j ~wj + VTJ ~vJ . (2)

which will be useful in deriving a key result later.

A technical issue with DWT There is a practical issue with the DWT when calculating the

inner product. In practice, we only have signals with a finite length. Suppose the available signal is

{xt}Nt=0. Then the calculation of certain inner products will involve unavailable xt’s. For example,

if we denote the wavelet used to obtain Wj,0 by {ht}, then

Wj,0 = 〈{ht}, {xt}〉 =
∑
t∈Z

htxt.

From this formula we can see that the calculation of Wj,0 involves xt with negative indices that are

not available. To solve this problem, DWT extends {xt} periodically as needed. For example,

Wj,0 =
∑
t∈Z

hj,0(t)xt =
∑
t∈Z

hj,0(t)xt mod N .

Therefore, the DWT coefficients at the left boundary of each scale do not reflect the powers of the

time-scale components of the original signal unless {xt} is periodic. Our later analysis will exclude

such boundary powers.

9
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3.4 Multi-Resolution Analysis with Wavelets Another important use of wavelets is to

construct a set of zero-phase filters, {h(j)
t }t∈Z, j = 1, 2, ..., J , so that we can decompose {xt} to a

set of time series {dj,t}, j = 1, 2, ..., J and {sJ,t} such that:

• the oscillations in {dj,t} lies in the scale of [2−(j+1), 2−j ], j = 1, 2, ..., J , and the oscillations

in {sJ,t} lies in the scale of [0, 2−(J+1)],

• the oscillations in {dj,t} is in the same pace with the scale-j oscillations in {xt}, this is due

to the fact that {h(j)
t }, j = 1, 2, ..., J are constructed in a way that they all have zero phase.

• and the filtering results forms the following scale decomposition of {xt}:

xt = d1,t + d2,t + · · ·+ dJ,t + sJ,t, t ∈ Z

Again, in practice we only have signals of finite length, say {xt}Nt=0 where N is some positive integer.

Then we can express the above decomposition using vectors

X = D1 +D2 + ...+DJ + SJ ,

where

X := [x0 x1 · · ·xN ]T , Dj := [dj,0 dj,1 · · · dj,N ]T , and SJ = [sJ,0 sJ,1 · · · sJ,N ]T .

The following is an illustration of decomposition by filtering, where

xt = N(0, 1) +
(t− 512)2/3

10
, t = 0, 1, 2, ..., 1024

is a time series, and the filters are constructed with the modified Daubechies LA-8 filters.

4 Simulation

Recall the simulation exercise of Otrok, Ravikumar, and Whiteman (2002) described in Section 2.

We extend this analysis along two dimensions. First, for each simulated series Xn = {ct}2000
t=0 , we

use the Daubechies Least-Asymmetric filter described above to decompose the consumption process

according to:

Xn = D1 + · · ·+DJ + SJ ,

where {dj,t}2000
t=0 denote the entries in Dj and {sJ,t}2000

t=0 denote the entries in SJ . We set J = 7

so that for each j ∈ [1, 7], the periodicities in each scale are given by PD1 ∈ [1/4, 1/2], PD2 ∈
[1/8, 1/4], PD3 ∈ [1/16, 1/8], PD4 ∈ [1/32, 1/16], PD5 ∈ [1/64, 1/32], PD6 ∈ [1/128, 1/64], and

PD7 ∈ [1/256, 1/128]. Therefore, any oscillation in D1 has a periodicity that ranges from two to

four quarters.

10
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Figure 6: The multi-resolution analysis of a given signal {xt}

Second, we examine both habit-formation utility and EZ preferences. The time-t scale-j compo-

nent of the consumption series is edj,t , and its contribution to the habit-formation, life-time utility

is calculated as

Un(d) = βt
(
edj,t − δedj,t−1

)1−γ
1− γ

For each pair of fixed (j, t), there are 1000 such contributions, from each simulation. The average

will be taken as the expected contribution to the life-time utility. We calculate the expected

contribution from each time-scale component to see which one contributes more to lifetime utility,

E(Un(d)) = (1/N)
∑N

n=1 Un(d). As above, we set β = 0.955, δ = −0.615, and γ = 0.8.

Each curve in Figures 7–8 correspond to a particular variance. Recall that scale-j corresponds

to the frequency band of [ 1
2j+1 ,

1
2j

]. Scales 1− 7 are the contributions of the Dj coefficients. Figure

7 plots these values for δ = −0.615, while Figure 8 decreases this value to −0.8.

The figures show an increasing pattern in average lifetime utility in the first three scales and

a subsequent leveling off thereafter, indicating the agent prefers variation at lower frequencies

under the Habit-formation model. This is consistent with the simulation and intuition of Otrok,

Ravikumar, and Whiteman (2002).8 With habit formation preferences, all of the temporal variation

in lifetime utility comes from the scales defined over shorter horizons. Scale one (D1) indicates

variation in consumption over a frequency range of two to four quarters. Variation in scales one

8Note that Figure 1 plots 1/period on the x-axis, while Figures 7–8 plot scales that are decreasing in frequency
on the x-axis.

11
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Figure 8: Habit Formation δ = −0.8

through three make it more difficult for agents to smooth consumption across adjacent periods.

Agents with habit formation are indifferent to consumption fluctuations occurring at a frequency

range above scale three (longer than two to four years). Slightly increasing the degree of habit

formation from 0.615 to 0.8, leads to a more significant shift in lifetime utility in scales one through

three, but the indifference in scales four through seven remains.

We repeat this exercise for EZ preferences. We calculate lifetime utility U
(n)
j,T associated with the

scale-j consumption component at the last period, where n denotes that it is for the nth simulation.

Note that for each simulation we assume U
(n)
j,t = 0 for t > T . So

U
(n)
j,T =

{
(1− β)e(1−ρ)d

(n)
j,T

} 1
1−ρ

, ET−1

(
U1−γ
j,T

)
=

∑1000
n=1

(
U

(n)
j,T

)1−γ

1000

For t = T − 1, T − 2, · · · , 0: Et
(
U1−γ
j,t+1

)
=

∑1000
n=1

(
U

(n)
j,t+1

)1−γ
1000 , and therefore

U
(n)
j,t =

{
(1− β)e(1−ρ)d

(n)
j,t + β

(
Et
[
U1−γ
j,t+1

]) 1−ρ
1−γ
} 1

1−ρ

(3)

The average expected life-time utility is given by E(Uj,t) =
∑1000

n=1

(
U

(n)
j,t

)
/1000.

Figures 9–10 plot the wavelet coefficients and lifetime utility for β = 0.955, γ = 0.8, and for

various values of ρ. In Figure 9, ρ is set to 0.5 and the variance is increased. The change in lifetime

utility is nearly negligible for this specification; utility ranges from 0.8515 to 0.8549 as the variance

increases in magnitude by a factor of four (recall that the mean of the consumption process is

constant). Figure 10 provides a key insight into the sensitivity of EZ preferences with respect to

temporal changes in the consumption process. This figure shows that the parameter ρ governs the

quantitative and qualitative response of utility to temporal changes in consumption volatility.
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Figure 9: EZ Preferences ρ = 0.5
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Figure 10: EZ Preferences various ρ

With EZ preferences, we can separate the effects of intertemporal substitution 1/(1 − ρ) from

risk aversion 1 − γ. The extent to which EZ preferences have temporal distortions depends upon

the relative values of these parameters. For values of ρ equal to γ, (3) reduces to standard time-

separable preferences. This is denoted by the flat line at ρ = 0.8. Under this scenario, the effects

of risk aversion completely offset the degree of intertemporal substitution. For values of ρ less

(greater) than α, utility is a monotonically decreasing (increasing) function in scale. When ρ is

substantially smaller than α, agents prefer early resolution of risk. That is, they would be indifferent

to a slight increase in overall volatility as long as the additional variation was concentrated at

higher frequencies. The intertemporal substitution “wins out” in this scenario and consumption

smoothing over the long run dominates the risk associated with an increase in overall uncertainty.

This preference ordering is the opposite of habit formation. However, when ρ is relatively large,

agents prefer variation at lower frequencies, which is identical to habit formation.

5 Empirical Application

The intuition from the previous section carries over to empirical asset pricing applications. We

derive a wavelet-based decomposition of the stochastic discount factor of Lucas (1978). In order to

do so, we impose Assumptions 1 and 2 of Dew-Becker and Giglio (2016) (D-BG, henceforth).

Assumption 1: The log of the stochastic discount factor mt+1 = log(Mt+1) can be represented as

mt+1 = f(It)−∆Et+1

∞∑
k=0

zkxt+1+k, (4)

where f(It) is an unspecified function of the time-t information set It, ∆Et+1 := Et+1 − Et is the

innovation in expectations based on time-t information, xt+1+k are pricing factors with weights, zk.

13
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The assumption states that the stochastic discount factor can be represented by an unknown

function of time-t information f(·) and a linear combination of future values of variables x that

contain pricing information at horizon k, where zk determines the weight of the variables at each

horizon. As discussed in D-BG, this assumption provides a log-linearized approximation of the

SDF under power utility, habit formation, Epstein-Zin preferences, the CAPM and the ICAPM.

Assumption 2: The pricing factor xt is driven by an n-dimensional vector moving average process

xt = b1xt (5)

xt =

∞∑
k=0

ΓkL
kεt, (6)

where [i.] xt is a vector of factors that indicate the status of economy at time t; [ii.] εt =

[ε1,t ε2,t · · · εn,t]T is a n × 1 random vector that denotes the fundamental shocks hitting the

economy at t. The only assumption placed on the shocks is Et1(εt2) = 0n for any t1 < t2. The lag

operator L is such that Lkεt = εt−k; and the n × n deterministic matrix Γk delivers the effect of

the shocks εt−k to the economy.

Assumption 2 states that the factors driving the economy can we written as a moving-average

representation. As stated in D-BG, no additional assumptions (e.g., normality) are imposed on the

system. The Wold representation theorem justifies such a representation.

Together these assumptions imply

∆Et+1(mt+1) = −∆Et+1

∞∑
k=0

zkxt+1+k (7)

= −
n∑
i=1

( ∞∑
k=0

zkgi,k

)
εi,t+1, (8)

where

gi,k :=

{
(1, i)th entry of Γk, if k ≥ 0;

0, otherwise.

Any particular shock εi,t will only affect {xt,xt+1,xt+2, · · · }. Its contributions to {xt, xt+1, xt+2, · · · }
are {gi,0εi,t, gi,1εi,t, gi,2εi,t, · · · }, respectively. Therefore, {gi,k}k indicates the impulse response of

the ith shock of the variable {xt}. The zk parameters are weights assigned to the impulse responses.

The particular values of the weights (zk) will differ for different specifications of the utility function.

Under habit formation, values of zk are given by

zk = Bk+1 +Dk+1 for k = 0, 1, 2, · · · , L, (9)

14
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where 9

Bk =

L∑
n=k

αhn
β
, k = 1, 2, ..., L+ 1; (10)

Dk =


∑L

m=1

∑L
i=m

αbihm
β(1−

∑L
q=1 bq)

, if k = 1;∑L+1−k
m=0

∑L
i=1+m

αbihm+k

β(1−
∑L
q=1 bq)

, if k = 2, 3, ..., L+ 1.
(11)

where

hn =

{
β, if n = 1;

−bn−1β
n, if n = 2, 3, ..., L+ 1;

Under EZ Preferences, the log-linearization of the stochastic discount factor is

∆Et+1mt+1 ≈ −

ρ∆Et+1∆ct+1 + (α− ρ)∆Et+1

∞∑
j=0

θj∆ct+1+j

 .

Therefore, the values of the weights zk are given by

z0 = α, zk = (α− ρ) · θk, for k ∈ Z+ (12)

5.1 Estimation of the Pricing Factor The pricing factor, (5)–(6), is assumed to be driven

by an n-dimensional moving average process. The moving average parameters can be estimated by

a vector autoregression (VAR) where lag-4 is chosen according to the Akaike information criterion,

x̄t = Φ1x̄t−1 + Φ2x̄t−2 + Φ3x̄t−3 + Φ4x̄t−4 + ε̄t (13)

We follow D-BG in using three time series for the estimation, x̄t = (x1,t x2,t x3,t)
T , where x1t is the

natural log of consumption growth; x2t and x3t are the first two principal components of a set of nine

financial variables: the aggregate price/earnings and price/dividend ratios; the 10 year/3 month

term spread; the Aaa-Baa corporate yield spread (default spread); the small-stock value spread; the

unemployment rate minus its 8-year moving average; RREL, the detrended version of the short-

term interest rate that Campbell (1991) finds forecasts market returns; the three-month Treasury

yield rate; and Lettau and Ludvigson’s (2001) CAY. The two principal components are scaled to

have the same variance as consumption growth. We employ quarterly data from 1952.1− 2015.4.10

Parameter estimates of the VAR equation (13) are in line with the literature and therefore relegated

to Appendix A.

9See Appendix A for additional details.
10Unlike D-BG, we estimate a four-lag VAR with lag information chosen according to the Akaike information

criterion.
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5.2 Fourier Transform Letting

xt :=


x̄t

x̄t−1

x̄t−2

x̄t−3

 and Φ :=


Φ1 Φ2 Φ3 Φ4

I3×3 03×3 03×3 03×3

03×3 I3×3 03×3 03×3

03×3 03×3 I3×3 03×3


then we have xt = Φxt−1 + εt, and we can derive the moving average parameters

xt =

∞∑
k=0

Φkε(t−k)

as Φk = Γk, for k = 0, 1, 2, . . . . We can write (7) as

∆Et+1(mt+1) = −
n∑
i=1

( ∞∑
k=0

zkgi,k

)
εi,t+1,

where

gi,k :=

{
(1, i)th entry of Γk, if k ≥ 0;

0, otherwise.

The sum
∑∞

k=0 zkgi,k measures the contribution of the shock εi,t+1 to the innovation of the

expected log stochastic discount factor ∆Et+1(mt+1), and is referred as the price of risk for shock

i. D-BG performed a Fourier transform on the contribution of {gi,k}k and {zk}k to the risk price.

Specifically, they chose three indicators for the economy (so n = 3) and for each i = 1, 2, 3,

∞∑
k=0

zkgi,k =
1

2π

∫ ω

−ω
Z(ω)Gi(ω)dω,

where

Z(ω) := z0 + 2
∞∑
k=1

zk cos(ωk) and Gi(ω) :=
∞∑

k=−∞
cos(ωk)gi,k.

Here, Gi(ω) is the real part of the Fourier transform of {gi,k}k∈Z, and
∑∞

k=1 zk cos(ωk) is the real

part of the Fourier transform of a sequence {Zk}k∈Z such that

Zk =

{
0, if k < 0;

zk, if k ≥ 0.

Hence, for any ω ∈ [0, π], the value of |Gi(ω)| reflects the contribution of the component with that

angular frequency in {gi,k}k to the risk price
∑∞

k=0 zkgi,k. This is also true for Z(ω) and {zk}k.

DG-B’s empirical results based on the estimated VAR and standard calibration of preferences

show that Gi(ω) has disproportional mass weight at lower frequencies (e.g., see DG-B Figure 2).
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Thus, EZ preferences, which are calibrated to emphasize low-frequency risk, are more sensitive to

changes in the price of risk vis-a-vis the habit formation specification.

5.3 Wavelet Transform Instead of the Fourier transform, we apply Discrete Wavelet Trans-

form to the sum
∑∞

k=0 zkgi,k. Since gi,k = 0 for all k ∈ Z−, we can rewrite the sum as

∞∑
k=0

zkgi,k =
∞∑

k=−∞
zkgi,k.

We write it in this form because later we are going to express the sum in terms of the DWT

coefficients of {gi,k}k and {zk}. When applying the DWT algorithm to {gi,k}∞k=0, the “Boundary

Condition” (discussed above) is problematic, since the power of {gi,k} mainly lies near k = 0. We

approximate the infinite sum with
∑2N−1

k=−2N zkgi,k where 2N is a large number such that

2N−1∑
k=−2N

zkgi,k ≈
∞∑

k=−∞
zkgi,k

It is not difficult to find such a number since zk and gi,k are approximately zero as k increases. We

will set N = 16, which is appropriate given our data.

To facilitate the wavelet analysis of the approximated risk price
∑2N−1

k=−2N zkgi,k, let

gi := (gi,−2N , gi,−2N+1, · · · , gi,2N−1)T ,

and

z := (z−2N , z−2N+1, · · · , z2N−1)T .

Let ~wj,gi denote the vector of scale-j wavelet coefficients and ~vJ,gi denote the vector of scale-J

scaling coefficients, according to equation (2). We then have

gi =WT
1 ~w1,gi +WT

2 ~w2,gi + · · ·+WT
J ~wJ,gi + VTJ ~vJ,gi .

Applying the above formula to the sum gives

2N−1∑
k=−2N

zkgi,k =zT · gi = zT · (WT
1 ~w1,gi +WT

2 ~w2,gi + · · ·+WT
J ~wJ,gi + VTJ ~vJ,gi)

=~wT
1,z · ~w1,gi + ~wT

2,z · ~w2,gi + · · ·+ ~wT
J,z · ~wJ,gi + ~vTJ,z · ~vJ,gi

The last expression above is a time-scale decomposition of
∑

k zkgi,k. Each vector that appears

in the expression is a frequency component, with its entries to be the time components of that

frequency. In the following sections, we will compare the magnitudes of the time-frequency compo-

nents of gi, and see which ones contribute the most to
∑

k zkgi,k under both the EZ preferences and

habit formation utility. To facilitate this comparison, define the power of a term to be its square,

17



Housworth, Walker and Xu: Wavelets

so the total power 11 is
∑J

l=1 ‖w‖2l,gi + ‖v‖2J,gi and the power percentage of Wj,k is

power percentage of Wj,k :=
W 2
j,k∑J

l=1 ‖w‖2l,gi + ‖v‖2J,gi
.

Specifically, we use the Least Asymmetric Daubechies filter with length 8 (Daubechies LA(8)

filter), discussed in Section 3 (see also Percival and Walden (2006)). We select the Least Asymmetric

Daubechies wavelet filter because it enables us to line up the events in the transformation coefficients

with those in the original signal by shifting. The ‘length 8’ means the length implies

gl = hl = 0, if l 6= 0, 1, · · · , 7.

5.4 Results Recall that Assumptions 1 and 2 imply a pricing equation given by ∆Et+1(mt+1) =

−∑n
i=1 (

∑∞
k=0 zkgi,k) εi,t+1, where the zk coefficients correspond to utility specifications and the gi,k

are identified through the wavelet transformation of the VAR. We set N = 16, so gi cover a period

of 232 quarters, which is 230 years.

Figure 11 shows the scalogram for the DWT of {g1,k}. In this scalogram, each block corresponds

to a wavelet coefficient’s power (contribution percentage). The larger the scale is, the wider the

blocks are, since the width of the block equals the length of the time period the corresponding

wavelet coefficient describes. For each wavelet coefficient, the magnitude of the power contribution

percentage is reflected by the color of the corresponding block, and the color-magnitude code bar

is on the right axis. On the top of this bar, we can see a yellow color represents the percentage

around 12%, while the dark blue at the bottom represents 0. The middle of the horizontal axis

corresponds to k = 0. We can see that the power comes from scale 6 to scale 12, at or right after

k = 0.

This table shows the wavelet coefficients with significant power percentages. We can see that

the wavelet coefficients with the most significant contribution are W6,0,W7,0,W8,0 and W9,1. The

sum of the power contribution percentages from scale-1 to scale-14 wavelet coefficients unaffected

by periodic extension is 98.96%, implying the power contribution from higher scale components

(contained in unaffected {vJ,k}2
N−J−1
k=0 ) is no greater than 1.04%; thus, all significant time-scale

components have been captured.

We present the scalograms for the DWT of {g2,k} and {g3,k} in Appendix A, as similar conclu-

sions can be drawn from them as that of {g1,k}. The sum of the power contribution percentages of

the unaffected wavelet coefficients from scale-1 to scale-14 is 99.61% for {g2,k} and 97.10% for {g3,k}
with most of the contribution coming from coefficients 5 through 12. The implication is that the

effects of any given shock εi,t on the economy is dominated by the scale-5 to scale-12 components

of gi. This also means that these components dominate the contribution from {gi,k}k for the sum,∑
k zkgi,k.

11Note that
∑J
l=1 ‖w‖

2
l,gi

+ ‖v‖2J,gi is constant for all J = {1, 2, ..., N}, where 2N is the length of the input signal
of DWT.
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Figure 11: Scalogram for the DWT of {g1,k}.

How do the wavelet coefficients interact with the two time non-separable utility functions? The

gi,k coefficients give the weight at different frequencies and time scales of the DWT, while the {zk}
coefficients, determined by the utility functions, provide the weight of the utility at each time scale.

To see this point, recall,∑
k

zkgi,k = ~wT
1,z · ~w1,gi + ~wT

2,z · ~w2,gi + · · ·+ ~wT
J,z · ~wJ,gi + ~vTJ,z · ~vJ,gi .

In this equation, each W
(g)
j,t can be viewed as a coefficient of W

(z)
j,t , where W

(g)
j,t and W

(z)
j,t denotes

the wavelet coefficients of {gi,k}k and {zk}, respectively. So for example, when W
(g)
6,0 is large, then

the contribution of W
(z)
6,0 to the sum will be magnified through W

(g)
6,0 ·W

(z)
6,0 .

Habit Formation. For the habit formation specification, we set N = 10, α = 0.5, L = 1024,

β = 0.975, and bk = 0.65k for k = 1, 2, · · · , L. The scalogram for the DWT of {zk} under habit

formation is in Figure 12 12. The values of the most relevant coefficients are in Table 2. From the

12To better present the result, we only plot the range where k ∈ [−50, 50] as the time-scale component beyond this
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Coefficient (wg) Power g1,k Period Length

W4,0 3.49% 4-8 yrs
W5,0 6.63% 8-16 yrs
W6,0 10.03% 16-32 yrs
W7,0 12.12% 32-64 yrs
W8,0 10.94% 64-128 yrs
W8,1 6.46% 64-128 yrs
W9,0 7.43% 128-256 yrs
W9,1 10.40% 128-256 yrs
W10,0 4.15% 256-512 yrs
W10,1 8.85% 256-512 yrs
W11,0 2.08% 512-1024 yrs
W11,1 5.62% 512-1024 yrs
W12,1 3.06% 1024-2048 yrs

Table 1: Power Contribution Percentage for DWT of g1,k.

Coefficient Power Per-
centage

Period Length

W1,−1 6.45% 0.5-1 years
W2,0 27.99% 1-2 years
W3,1 9.92% 2-4 years
W4,1 15.38% 4-8 years
W5,1 12.47% 8-16 years
W6,0 1.9% 16-32 years

Table 2: Power Contribution Percentage for DWT of zk under Habit Formation.

table and figure, it is clear that most of the power contribution is coming from coefficients that have

scale one to eight. The sum of the power contribution percentages of these coefficients is 97.2%.

This implies that the short-term (16 years or less) volatility contributes significantly to the pricing

risk.

Comparing Figure 12 / Table 2 to Figure 11 / Table 1, we see that variation in the data is primar-

ily at scales seven and higher, while habit formation (as calibrated) prices risk more significantly at

higher frequencies (scales four and lower). Translating to time periods: the habit-formation model

is sensitive to fluctuations at periods less than 16 years, while the majority of data variation is for

periods greater than 16 years. This result is robust to alternative values for the degree of habit

formation bk, as long as this value is positive.

Epstein-Zin Preferences The calibration for EZ preferences is given by N = 16, θ = 0.975, α =

5, ρ = 0.5. As with habit formation, we plot the scalogram in Figure 13 and provide a table that

summarizes the most significant DWT coefficients (zk), Table 3. In contrast with habit formation,

EZ preferences are sensitive to low frequency risk. The sum of the power contribution percentages

range has negligible power percentages
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Scalogram for DWT of z under Habit-formation model
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Figure 12: Scalogram for the DWT of {zk} under the Habit-formation model.

from scale-6 to scale-14 is 98.29%. This corresponds to a period of 16 years and higher. Comparing

Figure 13 to the DWT of the data, 11, we see that the two are nearly identical. The variation in

the data corresponds to where the EZ preferences are most sensitive.

One difference between our results using wavelets and those found using the more standard

Fourier transform is the importance of ultra-low frequency variations. Dew-Becker and Giglio (2016)

show that consumption cycles lasting 100 years and longer are most important for pricing assets

under the standard calibration for EZ preferences. They found very little weight on frequencies

shorter than 100 years and no weight on business cycle frequencies. While we find no role at

business cycle frequency, we find significant (greater than 25%) contributions coming from horizons

less than 100 years using the same data, empirical methodology and calibration.
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Scalogram for DWT of z under Epstein-Zin model
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Figure 13: Scalogram for the DWT of {zk} under Epstein-Zin preferences.

5.5 Discrete Wavelet Transformation Based on Haar Filter In this subsection we

will repeat the above discrete wavelet transform using the Haar filter instead of the Daubechies

LA(8) filter. Although the Haar filter suffers from an important leakage issue13 and hence is not

a good approximation to the ideal band-pass filter, it has a short length of two and therefore can

locate events in the time series better in time. Because of these properties, the Haar filter is also

used in this literature, e.g. Ortu, Tamoni, and Tebaldi (2013), Bandi and Tamoni (2016), and

Boons and Tamoni (2016).

Due to space limitations, we report full results in Online Appendix E, including the scalograms

of the DWTs based on the Haar filter. Here we merely note that the analysis using Haar wavelets

does not change our underlying message. By comparing the scalograms in Appendix E to Figures

11-13, we see that the dominating components for power contribution are closer to k = 0, indicating

the effects of the shocks decay more quickly than the previous results (Figure 11-13). This does

not change our primary message since the scalograms in Appendix E are very similar to their

counterparts in Section 5.4.

13Please refer to Percival and Walden (2006) for more details.

22



Housworth, Walker and Xu: Wavelets

Coefficient Power Period Length

W6,0 11.02% 16-32 yrs
W7,0 12.18% 32-64 yrs
W7,1 4.15% 32-64 years
W8,0 9.72% 64-128 yrs
W8,1 9.73% 64-128 yrs
W9,0 5.81% 128-256 yrs
W9,1 11.39% 128-256 yrs
W10,0 2.22% 256-512 yrs
W10,1 7.63% 256 years

Table 3: Power Contribution Percentage for DWT of zk under EZ preferences.

5.6 Empirical Tests In this section, we perform an empirical test to see which utility model

can price cross-sectional properties of asset prices. We adopt a method similar to that used in

D-BG Dew-Becker and Giglio (2016). They derived the following moment conditions14 for {zk}k
and {gi,k}k, i = 1, 2, or 3.

E
(

(x̄t+1 −Φyt)⊗ yt, exp(rt+1)− exp(rft+1)− rt+1(x̄t+1 −Φ(1)yt)
Tp
)

= 0, (14)

where

• x̄t+1 = [x1,t+1, x2,t+1, x3,t+1]T , which is defined as in (13).

• yt =


x̄t

x̄t−1

x̄t−2

x̄t−3

, which is a vector of length 12.

• rt+1 denotes the vector of portfolio returns that are representative of the economy, e.g. the

Fama French 25 portfolio returns.

• rft+1 denotes the risk-free return.

• Φ(1) = [Φ1 Φ2 Φ3 Φ4] where Φi, i = 1, 2, 3, 4 are the coefficient matrices in (13). So Φ(1) is a

matrix of dimention 3 by 12.

• p = 2 · [p1 p2 p3]T is two times the vector of risk prices, i.e. for i = 1, 2, or 3,

pi =
N∑
k=1

zk · gi,k.

14Please see Chapter 4 and Appendix F in Dew-Becker and Giglio (2016) for derivation details. We rewrite these
conditions using their result 1 and equation (59) for our convenience.

23



Housworth, Walker and Xu: Wavelets

rt: stacked returns of Fama-French (FF) 25 portfolios sorted on size and BM

Coefficient estimate z-score p-value

q1 46.14 3.64 0.0003
q2 516.82 0.54 0.5893
q3 −442.16 -0.27 0.7882

rt: stacked returns of the FF 25 portfolios
sorted on size and BM, and the 49 industrial portfolios

Coefficient estimate z-score p-value

q1 −11.73 -11.45 0.0000
q2 −456.05 -4.76 0.0000
q3 −105.67 -0.75 0.4517

Table 4: Empirical test results

To test which model better prices cross-sectional dynamics, we model zk in the following way,

zk = q1 · zEZ
k + q2 · zPower

k + q3 · zHabit
k ,

where {zEZ
k } are the weights under the Epstein-Zin preference stated in (12), zPower

k =

{
1, if k = 0;

0, otherwise

are the weights under the power utility model15, and {zHabit
k } are the weights under the habit-

formation model stated in (9).

We follow the steps taken in Appendix F.3 of Dew-Becker and Giglio (2016) to test which

of [q1, q2, q3] is significantly different from zero, using the standard sequential GMM. The estima-

tion/test results are given in Table 4. For more details of the estimation procedures, please refer

to our Online Appendix D.

From Table 4, we can see that q3 is statistically insignificant under both of the return universes,

q2 is significant only when the 49 industrial portfolios are included in the return universe, and q1 is

always significant with the most extreme z-scores. This is prima facie evidence that EZ preferences

are relatively more robust at pricing FF portfolios. Note that this does not imply macroeconomic

shocks with low frequencies are robustly priced. This is merely a horse race amongst our three

models. As shown in Xyngis (2016), preferences that take business cycle dynamics into account are

needed to accurately price the risk in the cross-section of returns.

6 Concluding Thoughts

We have shown how to use wavelet analysis to isolate the time variation in non-separable util-

ity. Our primary result is the wavelet decomposition of the stochastic discount factor. We apply

spectral analysis to this object and our results are largely consistent with the most recent litera-

ture; economic data used to approximate the stochastic discount factor has a strong low frequency

component. However, as noted by Xyngis (2016), this does not imply that these low frequency

15We set the weights under the power utility model according to equation (12) in Dew-Becker and Giglio (2016)
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dynamics are strong predictors of asset prices.

We believe that wavelets can be used to isolate frequency fluctuations in higher-order approx-

imations of the utility function. This would permit one to examine time-varying volatility, an

important aspect of financial data. We leave this for future research.
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Online Appendix (Not for Publication)

Appendix A. Weights zk under the Habit-formation model

This section derives the theoretical values of zk in equation (4) under the Habit-formation model.

It also includes the derivation of equation (10) and (11). We will use the log-linearization method.

The life time utility function The utility at time t in the Habit-formation model is defined

as

u(Ct, Xt) =
(Ct −Xt)

(1−α)

1− α , (A.1)

where Ct is the consumption level at time t, α ∈ (0, 1) is a parameter, Xt =
∑L

i=1 biCt−i, and

bi ∈ (0, 1) are the parameters. The lifetime utility at time t is defined as

Ut := Et
∞∑
n=0

βnu(Ct+n, Xt+n). (A.2)

The asset pricing model In order to define the stochastic discount factor, we first describe

an asset pricing model. At the beginning of each period t, assume the representative agent

• receives a constant endowment ē;

• receives the pay-off of his investment at the beginning of period t − 1, st−1(pt + dt), where

pt is the current price of the asset, dt is the dividend of the asset, and st−1 is the number of

shares he bought at the beginning of t− 1;

• and invests st · pt on the same asset.

Then the budget constraint condition of the agent at period t is

ē+ st−1(dt + pt) = Ct + stpt. (A.3)

Next we will derive an expression for the price pt. At the beginning of t, suppose the agent wants

to maximize his life-time utility when deciding how much he invests and consumes, which will lead

to the first-order condition of st:

0 = Et
∂Ut
∂st

= Et
∞∑
n=0

βn
∂u(Ct+n, Xt+n)

∂st

=Et
∞∑
n=0

βn
(
∂u(Ct+n, Xt+n)

∂Ct+n
· ∂Ct+n
∂st

+
∂u(Ct+n, Xt+n)

∂Xt+n
· ∂Xt+n

∂st

)
.

(A.4)
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From (A.3), we can derive that

∂Ct+n
∂st

=


−pt, if n = 0;

pt+1 + dt+1, if n = 1;

0, otherwise.

(A.5)

Since Xt =
∑L

i=1 biCt−i, Xt+n =
∑L

i=1 biCt+n−i. So

∂Xt+n

∂st
=


−b1pt, if n = 1;

−bnpt + bn−1(dt+1 + pt+1), if n = 2, 3, ..., L;

bL(pt+1 + dt+1), if n = L+ 1;

0, otherwise.

(A.6)

Plugging (A.5) and (A.6) to (A.4), we get

0 =Et
L+1∑
n=0

βn
(
∂u(Ct+n, Xt+n)

∂Ct+n
· ∂Ct+n
∂st

+
∂u(Ct+n, Xt+n)

∂Xt+n
· ∂Xt+n

∂st

)
=(Ct −Xt)

−α · (−pt) + Et
(
β(Ct+1 −Xt+1)−α(dt+1 + pt+1 + b1pt)

)
− Et

(
L∑
n=2

βn(Ct+n −Xt+n)−α[bn(−pt) + bn−1(dt+1 + pt+1)]

)
− Et

[
βL+1(Ct+L+1 −Xt+L+1)−αbL(dt+1 + pt+1)

]
.

So if we gather all the terms containing pt,

(Ct −Xt)
−α · pt − Et

(
βb1(Ct+1 −Xt+1)−α

)
· pt

− Et

(
L∑
n=2

βnbn(Ct+n −Xt+n)−α

)
· pt

=Et
(
β(Ct+1 −Xt+1)−α(dt+1 + pt+1)

)
− Et

(
L+1∑
n=2

βnbn−1(Ct+n −Xt+n)−α(dt+1 + pt+1)

)

Therefore, we have

pt =
Et
(∑L+1

n=1 hn(Ct+n −Xt+n)−α(pt+1 + dt+1)
)

Et
(∑L

n=0 gn(Ct+n −Xt+n)−α
)

= Et


(∑L+1

n=1 hn · (Ct+n −Xt+n)−α
)

Et
(∑L

n=0 gn · (Ct+n −Xt+n)−α
) · (pt+1 + dt+1)

 ,

(A.7)

29



Housworth, Walker and Xu: Wavelets

where

hn =

{
β, if n = 1;

−bn−1β
n, if n = 2, 3, ..., L+ 1;

gn =

{
1, if n = 0;

−bnβn, if n = 1, 2, 3, ..., L;

Stochastic discount factor (SDF) Mt+1. By (A.7), we define the stochastic discount factor

(SDF) as

Mt+1 :=

(∑L+1
n=1 hn · (Ct+n −Xt+n)−α

)
Et
(∑L

n=0 gn · (Ct+n −Xt+n)−α
) , (A.8)

so we have

pt = Et (Mt+1 · (pt+1 + dt+1)) .

Let mt+1 = logMt+1. Our goal is to express ∆Et+1mt+1 in the following form and get the values

for zk.

∆Et+1mt+1 = −∆Et+1

L∑
k=0

zk∆ct+1+k, (A.9)

where ∆ct+1 denotes the log consumption growth, that is,

ect = Ct, and ∆ct+1 := ct+1 − ct = log(Ct+1/Ct).

Notice that

∆Et+1mt+1 =∆Et+1 log(Mt+1)

=∆Et+1 log

(
L+1∑
n=1

hn · (Ct+n −Xt+n)−α

)

−∆Et+1 log

[
Et

(
L∑
n=0

gn · (Ct+n −Xt+n)−α

)]

=∆Et+1 log

(
L+1∑
n=1

hn · (Ct+n −Xt+n)−α

)
,

(A.10)

where the last equality is because ∆Et(constant) = 0. In the later sections of this appendix, we

will rewrite the left-hand side of (A.10) using log-linearization so that it will have the same format

as in (A.9).

Expressing ∆Et+1mt+1 in the format of (A.9)

Claim A.1:

(Ct −Xt)
−α =

[
ect −

L∑
i=1

bie
ct−i

]−α
= e−αct ·B ·At,
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where

B = [1−
L∑
i=1

bi]
−α, and At = 1 +

L∑
i=1

−αbi
1−∑L

q=1 bq

i−1∑
m=0

∆ct−m.

Proof. First, we have

ct − ct−k = ∆ct + ∆ct−1 + ...+ ∆ct−k+1. (A.11)

[
ect −

L∑
i=1

bie
ct−i

]−α

=e−αct

[
1−

L∑
i=1

bie
ct−i−ct

]−α
using (A.11), we get

=e−αct

[
1−

L∑
i=1

bie
−(∆ct+...+∆ct−i+1)

]−α
use the linear approximation ex ≈ 1 + x

≈e−αct
[

1−
L∑
i=1

bi[1− (∆ct + ...+ ∆ct−i+1)]

]−α

=e−αct

[
1−

L∑
i=1

bi +

L∑
i=1

bi(∆ct + ...+ ∆ct−i+1)

]−α

=e−αct [1−
L∑
i=1

bi]
−α

[
1 +

L∑
i=1

bi

1−∑L
q=1 bq

(∆ct + ...+ ∆ct−i+1)

]−α
use the linear approximation (1 + x)α = 1 + αx

=e−αct [1−
L∑
i=1

bi]
−α

[
1 +

L∑
i=1

−αbi
1−∑L

q=1 bq
(∆ct + ...+ ∆ct−i+1)

]

=e−αct [1−
L∑
i=1

bi]
−α

[
1 +

L∑
i=1

−αbi
1−∑L

q=1 bq

i−1∑
m=0

∆ct−m

]
=e−αct ·B ·At,

This completes the proof of Claim A.1.
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If we apply this Claim to the log term in (A.10), we have

log

(
L+1∑
n=1

hn · (Ct+n −Xt+n)−α

)

= log

(
L+1∑
n=1

hn · e−αct+n ·At+n ·B
)

= log(βe−αctB) + log

(
L∑
n=1

hn
β
e−α(ct+n−ct) ·At+n

)
by (A.11)

= log(βe−αctB) + log

(
L∑
n=1

hn
β
e−α

∑n
k=1 ∆ct+k ·At+n

)
use the linear approximation ex ≈ 1 + x

≈ log(βe−αctB) + log

(
L∑
n=1

hn
β

(1−
n∑
k=1

α∆ct+k) ·At+n
)

Plugging this result to (A.10), we have

∆Et+1mt+1 =∆Et+1 log

(
L+1∑
n=1

hn · (Ct+n −Xt+n)−α

)

=∆Et+1

[
log(βe−αctB) + log

(
L+1∑
n=1

hn
β

(1−
n∑
k=1

α∆ct+k) ·At+n
)]

=∆Et+1

[
log

(
L+1∑
n=1

hn
β

(1−
n∑
k=1

α∆ct+k) ·At+n
)] (A.12)

Now we rewrite part of (A.12). Using the expression of At in Claim A.1, we have

(1−
n∑
k=1

α∆ct+k) ·At+n

=(1−
n∑
k=1

α∆ct+k)

[
1 +

L∑
i=1

−αbi
1−∑L

q=1 bq
(
i−1∑
m=0

∆ct+n−m)

]
neglecting the quadratic terms, we get

≈1−
n∑
k=1

α∆ct+k −
L∑
i=1

αbi

1−∑L
q=1 bq

(

i−1∑
m=0

∆ct+n−m)

=1−
n∑
k=1

α∆ct+k −
L∑
i=1

i−1∑
m=0

αbi

1−∑L
q=1 bq

(∆ct+n−m)

(A.13)
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Plugging (A.13) to the log-term in (A.12), we have

log

(
L+1∑
n=1

hn
β

(1−
n∑
k=1

α∆ct+k) ·At+n
)

= log

[
L+1∑
n=1

hn
β

(
1−

n∑
k=1

α∆ct+k −
L∑
i=1

i−1∑
m=0

αbi

1−∑L
q=1 bq

(∆ct+n−m)

)]

= log

[
L+1∑
n=1

hn
β
−
L+1∑
n=1

n∑
k=1

αhn
β

∆ct+k −
L+1∑
n=1

L∑
i=1

i−1∑
m=0

hn
β

αbi

1−∑L
q=1 bq

(∆ct+n−m)

]

= log

[
L+1∑
n=1

hn
β
−
L+1∑
k=1

Bk∆ct+k −
(

0∑
k=2−L

Hk∆ct+k +

L+1∑
k=1

Dk∆ct+k

)]
...(∗)

= log

(
L+1∑
n=1

hn
β
−
L+1∑
k=1

(Bk +Dk)∆ct+k −
0∑

k=2−L
Hk∆ct+k

)

= log

(
1 +

L+1∑
n=2

hn
β
−
L+1∑
k=1

(Bk +Dk)∆ct+k −
0∑

k=2−L
Hk∆ct+k

)
Since log(1 + x) ≈ x

≈
L+1∑
n=2

hn
β
−
L+1∑
k=1

(Bk +Dk)∆ct+k −
0∑

k=2−L
Hk∆ct+k

(A.14)

where the derivation of (∗) will be explained at the end and

Bk =
L∑
n=k

αhn
β
, k = 1, 2, ..., L+ 1;

Dk =


∑L

m=1

∑L
i=m

αbihm
β(1−

∑L
q=1 bq)

, if k = 1;∑L+1−k
m=0

∑L
i=1+m

αbihm+k

β(1−
∑L
q=1 bq)

, if k = 2, 3, ..., L+ 1.

The form of Hk is not given as it will not be necessary.

Substituting (A.14) back to (A.12), we get

∆Et+1mt+1 =∆Et+1

[
log

(
L+1∑
n=1

hn
β

(1−
n∑
k=1

α∆ct+k) ·At+n
)]

≈∆Et+1

[
L+1∑
n=2

hn
β
−
L+1∑
k=1

(Bk +Dk)∆ct+k −
0∑

k=2−L
Hk∆ct+k

]

=−∆Et+1

(
L+1∑
k=1

(Bk +Dk)∆ct+k

)
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This is of the same format as (A.9). So we have

zk = Bk+1 +Dk+1, for k = 0, 1, 2, · · · , L.

Derivation of the equation of (*) Equation (∗) says

log

[
L+1∑
n=1

hn
β
−
L+1∑
n=1

n∑
k=1

αhn
β

∆ct+k −
L+1∑
n=1

L∑
i=1

i−1∑
m=0

hn
β

αbi

1−∑L
q=1 bq

(∆ct+n−m)

]

= log

[
L+1∑
n=1

hn
β
−
L+1∑
k=1

Bk∆ct+k −
(

0∑
k=2−L

Hk∆ct+k +
L+1∑
k=1

Dk∆ct+k

)]
...(∗)

We are going to prove it by looking at the last two sums on the left respectively.

First, we show that
L+1∑
n=1

n∑
k=1

αhn
β

∆ct+k =

L+1∑
k=1

Bk∆ct+k, (A.15)

where

Bk =

L∑
n=k

αhn
β
, k = 1, 2, ..., L+ 1.

The following table shows the coefficients for each ∆ct+k in the left-hand side of (A.15).

Value of k Possible values of n Corresponding subsum

k = 1 n ∈ [1, L+ 1]
∑L+1

n=1
αhn
β ∆ct+1

k = 2 n ∈ [2, L+ 1]
∑L+1

n=2
αhn
β ∆ct+2

k = 3 n ∈ [3, L+ 1]
∑L+1

n=3
αhn
β ∆ct+3

...
...

...

k = L+ 1 n ∈ [L+ 1, L+ 1]
∑L+1

n=L+1
αhn
β ∆ct+L+1

Through observation, we can see that the coefficient of ∆ct+k is
∑L+1

n=k
αhn
β . Hence, (A.15) is true.

Next, we show that

L+1∑
n=1

L∑
i=1

i−1∑
m=0

hn
β

αbi

1−∑L
q=1 bq

(∆ct+n−m) =
0∑

k=2−L
Hk∆ct+k +

L+1∑
k=1

Dk∆ct+k,

where Dk is as defined in (A.14). To prove this equality, again, we look at the coefficients for each

∆ct+k.
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Coefficients of ∆ct+k, k = 2, · · · , L+ 1. If n−m = k, the corresponding possible values for

n, m, and i are

Value of n Value of m Possible values of i Corresponding subsum

n = L+ 1 m = L+ 1− k i ∈ [L− k + 2, L]
∑L

i=(L−k)+2
αbihL+1

β(1−
∑L
q=1 bq)

(∆ct+k)

n = L m = L− k i ∈ [(L− k) + 1, L]
∑L

i=(L−k)+1
αbihL

β(1−
∑L
q=1 bq)

(∆ct+k)

n = L− 1 m = L− k − 1 i ∈ [(L− k), L]
∑L

i=(L−k)
αbihL−1

β(1−
∑L
q=1 bq)

(∆ct+k)

...
...

...
...

n = k m = 0 i ∈ [1, L]
∑L

i=1
αbihk

β(1−
∑L
q=1 bq)

(∆ct+k)

The sum of the above corresponding subsum is

L−k+1∑
m=0

L∑
i=1+m

αbihm+k

β(1−∑L
q=1 bq)

(∆ct+k).

So for k = 2, ..., L+ 1, we set

Dk =
L−k+1∑
m=0

L∑
i=1+m

αbihm+k

β(1−∑L
q=1 bq)

.

Coefficients of ∆ct+1. If n−m = k = 1, the corresponding possible values for n, m, and i are

Value of n value of m Associated values of i corresponding subsum

n = L m = L− 1 i ∈ [L,L]
∑L

i=L
αbihL

β(1−
∑L
q=1 bq)

∆ct+1

n = L− 1 m = L− 2 i ∈ [L− 1, L]
∑L

i=L−1
αbihL−1

β(1−
∑L
q=1 bq)

∆ct+1

... ... ... ...

n = 1 m = 0 i ∈ [1, L]
∑L

i=1
αbih1

β(1−
∑L
q=1 bq)

∆ct+1

Taking the sum of the above corresponding subsums, we have

L∑
m=1

L∑
i=m

αbihm

β(1−∑L
q=1 bq)

∆ct+1.

So,

D1 =
L∑

m=1

L∑
i=m

αbihm

β(1−∑L
q=1 bq)

.

This finishes the proof.
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Appendix B. VAR Estimates

The parameter estimates for the vector autoregression are given by

φ1 =

 0.30343 0.89964 −0.47492

0.01221 1.30330 −0.15682

0.08092 0.53625 0.52959



φ2 =

 0.30917 −0.56619 0.18495

−0.00683 −0.39164 0.06958

0.00687 −0.29411 0.05774



φ3 =

 0.21782 −0.80314 0.12451

−0.02208 0.20593 0.04314

−0.02098 0.10640 0.35794



φ4 =

 0.09434 0.43410 0.04153

−0.00148 −0.16712 −0.02475

−0.08231 −0.37490 −0.01229


The corresponding standard errors are,

SE(Φ1) =

 0.06446 0.24027 0.08674

0.01939 0.07228 0.02609

0.05224 0.19471 0.07029



SE(Φ2) =

 0.06646 0.37375 0.11217

0.01999 0.11243 0.03374

0.05386 0.30288 0.0909



SE(Φ3) =

 0.06654 0.37548 0.11325

0.02001 0.11295 0.03407

0.05392 0.30428 0.09178



SE(Φ4) =

 0.06215 0.24218 0.09811

0.0187 0.07285 0.02951

0.05037 0.19626 0.0795


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Appendix C. Scalograms for the DWT of {g2,k} and {g3,k}
The scalograms for the DWT of {g2,k} and {g3,k} are as follows.
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Parameter values for the empirical test

zEZ
k zHabit

k

α = 0.5 α = 5
α = 0.5 ρ = 0.5
α = 0.5 θ = 0.975

Table D.1

Appendix D. Details of the Empirical Test

The parameters’ values we choose for computing {zk}2
9

k=1 are listed in Table D.1. The monthly

returns (we will convert them to quarterly returns) of the Fama-French 25 portfolio sorted on size

and BM, and the 49 industrial portfolios are downloaded from Kenneth R. French’s website, with

the data period from 1952.01 to 2015.09.

1. We obtain the values of Φ(1) using the estimates obtained from the lag-4 VAR in (13).

2. Calculate D11 = ∂G1

∂Φ(1) , where

G1 =
N∑
t=1

~g1(t)/N,~g1(t) = (x̄t+1 −Φ(1)yt)⊗ yt, and N = 29.

3. Use the estimated Φ(1) to estimate q, by solving

argminqG
T
2 ·G2,

where G2 =
∑N

t=1 ~g2(t)/N , T denotes matrix transpose, and

~g2(t) = exp(rt+1)− exp(rft+1)− rt+1 · (x̄t+1 −Φ(1)yt)
Tq.

4. Calculate D21 = ∂G2

∂Φ(1) .

5. Calculate D22 = ∂G2
∂q .

6. To calculate an efficient GMM estimator of q, we need to estimate V =
∑∞

j=−∞ E
(
g(t) · ~gT (t)

)
,

where ~g(t) =

[
~g1(t)

~g2(t)

]
. The formula we use is stated in section 11.7 Estimating the Spectral

Density Matrix of Cochrane’s asset-pricing book (we will choose K = 20)

V̂ =
1

K(N −K)

N∑
t=k+1

(~v(t)− v̄)(~v(t)− v̄)T ,
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where

~v(t) =

K∑
j=1

~gt−j , and v̄ =

N∑
t=K+1

~v(t)/(N −K).

7. We use the following formula in Hansen (2008) to calculate the selection matrix for the

moment conditions G2 = 0.

A22 = DT
22 ·W2,

where

• W2 =
{
C · V̂ · CT

}−1
is the weighting matrix for the moment conditions G2 = 0,

• C =
[
−D21 · (A11 ·D11)−1 ·A11 I

]
, A11 = DT

11 ·W1,

• and W1 is the weighting matrix for the VAR estimates of Φ(1) and hence is the identity

matrix.

8. Use W2 to obtain an efficient GMM estimate q̂eff by solving

argminqG
T
2 ·W2 ·G2.

9. Recalculate D21 using q̂eff.

10. Recalculate V̂ .

11. Recalculate A22 using D21 and V̂ .

12. Calculate cov(q̂eff − q) where q denotes the true values, using the following formula derived

from Hansen (2008).

cov(q̂eff − q) = CT1 · V̂ · C1,

where

C1 = (A22D22)−1
[
−D21 · (A11 ·D11)−1 ·A11 I

]
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Appendix E. Scalograms for the DWT based on Haar filter
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Scalogram for DWT of g1 based on Haar filter
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Scalogram for DWT of g2 based on Haar filter

Scale 1

Scale 2

Scale 3

Scale 4

Scale 5

Scale 6

Scale 7

Scale 8

Scale 9

Scale 10

Scale 11

Scale 12

Scale 13

Scale 14

k  [-216, 216-1]
0

0.05

0.1

0.15

0.2

41



Housworth, Walker and Xu: Wavelets

Scalogram for DWT of g3 based on Haar filter
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Scalogram for DWT of z under Epstein-Zin model based on Haar
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Scalogram for DWT of z under Habit-formation model based on Haar
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