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Abstract

In the context of a dynamic model with incomplete information, we isolate a novel mech-
anism of shock propagation. We term the mechanism confounding dynamics because it arises
from agents’ optimal signal extraction efforts on variables whose dynamics—as opposed to super-
imposed noise—prevents full revelation of information. Employing methods in the space of ana-
lytic functions, we are able to obtain analytical characterizations of the equilibria that generalize
the celebrated Hansen-Sargent optimal prediction formula. Our main theorem establishes con-
ditions under which confounding dynamics emerge in equilibrium in general settings. We apply
our results to a canonical one-sector real business cycle model with dispersed information. In
that setting, confounding dynamics is shown to amplify the propagation of a productivity shock,
producing hump-shaped impulse response functions.
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1 Introduction

Modeling and seeking to understand economic fluctuations is one of the cornerstones of modern

economics. The role of incomplete information in this endeavor was acknowledged very early on by

Pigou (1929) and Keynes (1936). Their ideas were first formalized in a rational expectations setting

by Lucas (1972, 1975), King (1982) and Townsend (1983b). The underlying theme that ties these

papers together is that unresolved uncertainty—in and of itself—can be a source of fluctuation

in the economy. This idea has seen a resurgence. Dynamic models with dispersed information

are becoming increasingly prominent in several literatures such as asset pricing, optimal policy

communication, international finance, and business cycles.1 Our paper contributes to this literature

by introducing a novel mechanism of shock propagation, which we call confounding dynamics, and

does so in a manner that permits tractability.

Confounding dynamics arise from optimal prediction (i.e. rational expectations) in which past

realizations of economic shocks prevent full revelation of information today, even when an arbitrarily

large amount of data is available. Ensuring confounding dynamics emerge in equilibrium amounts

to deriving non-invertibility restrictions on the equilibrium system of equations. If this system is

non-invertible in current and past observations, agents will never fully unravel the contemporaneous

economic shock. Our primary example of Section 5, which is based on the real business cycle model

of Lucas (1975), shows that non-invertibility of the exogenous process is not a necessary condition

for confounding dynamics. The model’s cross-equation restrictions endogenously generate non-

invertible representations, even when the exogenous process is always invertible. Confounding

dynamics can also persist when the number of observables is equal to the number of shocks and

therefore, our approach does not rely on the need to overrun the agent’s information set with

exogenous noise.

We articulate the idea of confounding dynamics in three steps. First, Section 2 derives an op-

timal prediction formula under confounding dynamics that extends the celebrated Hansen-Sargent

formula, and makes an explicit connection to these dynamics. Subsequently, we demonstrate that

this behavior carries over to a generic rational expectations model with dispersed information.

Our main theorem contains two equations—one that characterizes the dynamic properties of the

equilibrium when confounding dynamics are present and one that derives restrictions that guar-

antee confounding dynamics are preserved in equilibrium. Finally, we provide economic intuition

by introducing confounding dynamics into a standard Real Business Cycle model. This applica-

tion showcases the central insight coming from our main theorem and the defining property of

confounding dynamics. The insight is that permitting information to arise endogenously in the

1The literature is too voluminous to cite every worthy paper. Recent examples include: Woodford (2003a),
Pearlman and Sargent (2005), Allen, Morris, and Shin (2006), Bacchetta and van Wincoop (2006), Hellwig (2006),
Adam (2007), Gregoir and Weill (2007), Angeletos and Pavan (2007), Kasa, Walker, and Whiteman (2014), Lorenzoni
(2009), Rondina (2009), Angeletos and La’O (2009), Angeletos and La’O (2013), Hellwig and Venkateswaran (2009),
Graham and Wright (2010), Nimark (2010), Hassan and Mertens (2011), Benhabib, Wang, and Wen (2015), Huo and
Takayama (2016) and Angeletos and Lian (2016).
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context of a model opens the door to an equilibrium that is usually overlooked when information

is exogenously provided to agents. Our analytical representation allows us to carefully show how

confounding dynamics interacts with crucial parameters of the model. For example, as the elasticity

of substitution increases, endogenous variables become more informative and it is more difficult to

maintain confounding dynamics in equilibrium. The defining property of confounding dynamics is

an impulse response function that is amplified and more persistent relative to the full information

equilibrium. There are two possible shapes of an impulse response to a fundamental shock under

confounding dynamics: [i.] fluctuations around the full information counterpart that display the

“waves of optimism and pessimism” of Pigou (1929); and [ii.] an amplified impulse response func-

tion that is hump-shaped. We discuss both scenarios in the context of exogenous signal extraction

in Section 2. Section 5 focuses on the latter type of impulse response and argues that confounding

dynamics—without additional frictions—can provide the internal propagation necessary to match

important moments of the data along the lines discussed in Cogley and Nason (1995).

We solve and analyze the rational expectations equilibrium in the space of analytic functions.

This approach has several advantages vis-a-vis standard time-domain methods. For example, as

emphasized in Townsend (1983a), equilibria are sought in generic functional spaces spanned by

linear combinations of shocks, which allows one to avoid explicitly modeling higher-order belief

dynamics. Moreover, the matrix Ricatti equation typical of Kalman filtering is replaced by a more

transparent spectral factorization problem. This allows us to solve and analyze the equilibrium in

closed form. We are not the first to advocate such an approach. Others, such as Futia (1981),

Townsend (1983a), Taub (1989), Kasa (2000), Walker (2007), Rondina (2009), Bernhardt, Seiler,

and Taub (2010), Kasa, Walker, and Whiteman (2014), and Huo and Takayama (2016) have used

similar techniques to solve dynamic rational expectation models with incomplete information. We

contribute to this literature by deriving analytical representations (e.g., generalized Hansen-Sargent

formulas) and by providing a systematic treatment of equilibrium conditions in models with dis-

persed information that display confounding dynamics. Futia (1981) and Townsend (1983a) were

the first to advocate for the use of analytic functions to solve dynamic rational expectations mod-

els with heterogeneous information. Many of the mathematical antecedents of this paper can be

found there and in Whiteman (1983). Taub (1989) demonstrates how the algebra associated with

dynamic signal extraction (i.e., spectral factorization) is simplified through the analytic function

approach. We take advantage of these formulas to completely characterize existence and unique-

ness of equilibria in dispersed informational setups. Bernhardt, Seiler, and Taub (2010) and Kasa,

Walker, and Whiteman (2014) do not examine models with dispersed information, but show how

these methods can be used to help resolve asset pricing anomalies.

2 Prediction with Confounding Dynamics

To study our primary mechanism, we present a simple version of the prediction problem that

operates at the heart of the rational expectations equilibria with confounding dynamics. For the

reader unfamiliar with frequency domain methods we provide a primer in Appendix C.

2
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Consider the univariate process specified as

st = −λεt + εt−1 = (L− λ)εt, (1)

where εt is a mean-zero, normally distributed variable with variable σ2ε . Suppose that the prediction

problem is to compute the mean-squared error minimizing prediction for εt given that st is observed.

To fix ideas and foreshadow results, imagine that εt is the time-t unobserved innovation in aggregate

productivity in the economy, while st is the observed market rental rate of physical capital. The

prediction problem asks for an estimate of the current productivity innovation using the history of

the market rental rate.

To solve the problem, we need to consider two possible cases. If |λ| ≥ 1, the process is deemed

fundamental for εt using the terminology of Rozanov (1967), which means that the stochastic

process (1) is invertible in current and past observables; therefore there exists a linear combination

of current and past st’s that allows the exact recovery of εt. Defining the lag operator Lxt = xt−1,

one can easily verify that with |λ| ≥ 1, L− λ is an invertible operator, and the optimal prediction

corresponds to

P(εt|st) =
st

L− λ
= − 1

λ

(
st + λ−1st−1 + λ−2st−2 + λ−3st−3 + ...

)
= εt, (2)

which verifies that the history of st contains all the information needed to perfectly know εt.

Consider now the case of |λ| < 1. Clearly, the prediction formula (2) is no longer well defined

as the coefficients diverge. In this simple environment, Rozanov (1967) shows that the appropriate

factorization requires flipping the root λ outside of the unit circle through the use of a Blaschke

factor, which we denote as B(L) = (1− λL)/(L− λ).2 Applying the Blaschke factor results in the

optimal prediction,

P(εt|st) = − λ

1− λL
st = −λ

(
st + λst−1 + λ2st−2 + λ3st−3 + ...

)
= −λ

(
L− λ
1− λL

)
εt, (3)

Note that the mean squared forecast error of
(
1− λ2

)
σ2ε > 0, demonstrating that as |λ| approaches

one from below there is exact recovery of εt.

When the process is non-invertible, (3) shows that the history of current and past st’s reveals

a particular linear combination of εt’s. Expanding this last term yields

P(εt|st) = λ2εt︸︷︷︸ − (1− λ2)[λεt−1 + λ2εt−2 + λ3εt−3 + · · · ]︸ ︷︷ ︸ . (4)

information + noise from confounding dynamics

2Specifically, the Blaschke factor flips the zero from inside the unit circle to outside the unit circle via the trans-
formation

(L− λ)

(
1− λL
L− λ

)(
L− λ
1− λL

)
εt

Note that B(L)B(L)−1 = 1, and therefore, the Blaschke factor does not alter the covariance generating function of
the time series.

3
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Thus, the noise resulting from confounding dynamics takes an unusual form as it consists of a linear

combination of past realizations of εt. Expression (4) suggests that the process (1) is informationally

equivalent to a noisy signal about εt, where the noise is the linear combination of past shocks (in

the bracketed term), and the signal-to-noise ratio is measured by λ2. A λ closer to zero results in

less information and more noise but, at the same time, it also makes past shocks less persistent.

As λ→ 0, there is no information in st about εt and the optimal prediction is 0, the unconditional

average. As long as |λ| ∈ (−1, 1), the value of εt will never be learned and in this sense, the history

of the fundamental shock acts as a noise shock but (as shown below) has non-standard properties.

This is the defining property of confounding dynamics. The shocks are perfectly correlated and no

super-imposed noise process is necessary to keep full revelation of information from occurring. An

infinite history of past shocks is not sufficient because the dynamic history of the shock confounds

agents into making forecast errors that would be persistent under the standard full-information

rational expectations case.

2.1 Economic Interpretation We now provide some economic intuition as it relates to our

signal extraction problem, noting that additional intuition is found in Section 5, where we embed

this learning mechanism in a real business cycle model.

Comparing representation (1), which we repeat here for convenience, st = (L−λ)εt, to the funda-

mental representation used to form the optimal prediction (2), st = (1−λL)ε̃t where ε̃t = B(L)−1εt,

we see that information is discounted differently. Under full information (assuming agents observe

the underlying shocks directly), last period’s shock would be discounted more heavily relative to

the contemporaneous shock, recall |λ| < 1. This discounting is exactly reversed when agents have

confounding dynamics (assuming agents only observe st) with the contemporaneous shock receiving

the more significant discount. Therefore, innovations entering the agents’ information sets will be

discounted differently from the full-information case when confounding dynamics is operational.

The extent of the difference in discounting is dictated entirely by the parameter λ: as λ approaches

zero (one), the difference will be large (small).

An alternative interpretation comes from noting that confounding dynamics nests the sticky

information setup of Mankiw and Reis (2002). When λ = 0, innovations are observed by agents with

a one-period lag, in accordance with sticky information. One might argue that this assumption is

too strong in that agents may not ignore all information with a one-period lag. Our representation

allows for a more continuous interpretation. As |λ| approaches one from below starting from

zero, agents become more informed. For |λ| ≥ 1, all information is revealed. In principle, one

could estimate this parameter using standard methods in a DSGE model. The estimate of λ

would then determine the optimal amount of “stickiness” as dictated by data. Several papers

argue that sticky information is a natural setup because it can reconcile macro price rigidity with

micro price flexibility [Klenow and Willis (2007)] and survey expectations of inflation [Coibion and

Gorodnichenko (2012)]. Our approach suggests there is even more flexibility along this dimension.

Finally, we note that the econometrics literature has seen a renewed interest in identification of

vector auto-regressions (VAR) in the presence of non-invertibilities [see, Canova and Sahneh (2017)].

4
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One argument in favor of confounding dynamics is that if econometricians using sophisticated

techniques have trouble cleanly identifying shocks to the macroeconomy, agents will most likely

suffer from similar identification problems, implying non-invertibilities are more likely than not. In

this instance, theory can help with measurement because we, as modelers, can cleanly identify εt

from ε̃t, and can then ask how the economy responds to the structural innovation, εt, when agents

have incomplete information.

2.2 Connection to Standard Signal Extraction To make the connection to the standard

signal extraction problem more explicit, suppose that agents observe an infinite history of the signal

xt = εt + ηt, (5)

where ηt
iid∼ N

(
0, σ2η

)
. The optimal prediction is well known and given by P(εt|xt) = τxt, where τ

is the relative weight given to the signal, τ = σ2ε/(σ
2
ε + σ2η). It can be shown3 that the information

content of (1) with |λ| < 1 is equivalent to (5), where equivalence is defined as equality of variance

of the forecast error conditioned on the infinite history of the observed signal, i.e.

E
[(
εt − P

(
εt|st

))2]
= E

[(
εt − P

(
εt|xt

))2]
,

when

λ2 = τ. (6)

Notice that when the signal-to-noise ratio increases (decreases), this corresponds to a higher (lower)

absolute value of λ. In the limit, as σ2η → 0, then λ2 → 1, which ensures exact recovery of the state

in both cases.

While the informational content can be made identical, the dynamics of the two signal extraction

problems are very different. To visualize this, we report the impulse response function for the

prediction equations that contain confounding dynamics (4) and for the standard signal extraction

problem (5) to a one time, one unit increase in εt in Figure 1. We do this for both a low and high

value of λ2 (resp. τ).4

Figure A reports a negative value for the non-invertible root λ. Here the impulse response

to (4) under-predicts the actual innovation on impact (which is one), with a smaller value of λ

under-predicting more significantly. This is due to the first term on the RHS of (4). The same

is true for the standard signal extraction formulation (dashed lines). Agents weigh the initial

innovation by the signal-to-noise ratio τ < 1 and therefore under-predict on impact. This is

where the similarities end. With confounding dynamics, periods two through six show waves of

over- and under-prediction relative to the actual realization and relative to the standard signal

extraction problem. As discussed above, the current and past innovations will persistently affect

the prediction function several periods beyond impact. This defining characteristic of confounding

3See Online Appendix B.2 for a proof.
4For aesthetic reasons, the impulse responses are slightly smoothed at turning points.
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Figure B: Positive λFigure A: Negative λ

Figure 1: Panel A: Impulse Responses of xt and st to a one unit change in εt for signal-to-noise ratios of τ = 1/2,
λ = −1/

√
2 (dotted, solid blue) and τ = 1/10, λ = −1/

√
10 (dotted, dashed). Panel B: Impulse response of xt for

λ = 1/
√

2 (solid) and λ = 1/
√

10 (dashed).

dynamics leads to the waves of over- and under-reaction. This is in contrast to the full information

case and standard signal-extraction case where the impulse response is zero after impact. As

already pointed out, the smaller the λ, the larger the noise term in (4), but the less persistent the

over- and under-prediction. Thus optimal signal extraction with confounding dynamics generates

fluctuations where the full-information and exogenously imposed noise counterparts generate none.

Figure B shows that the under- and over-reaction is not the only form of the impulse response

under confounding dynamics. A positive value for λ generates an (inverse) hump-shaped impulse

response.5 Again, this can be seen from (4): the under-reaction on impact is the same independent

of sign due to the λ2 term; a positive value for λ implies that the elements of the noise term of (4)

all enter with the same sign, causing the impulse to return gradually from below. The larger the

value of λ, the more the impulse overshoots. Therefore in either case, confounding dynamics adds

persistence to the impulse where traditional signal extraction would not.

3 Model, Information, and Equilibrium

We now model confounding dynamics in a generic rational expectations formulation that permits

many interpretations (e.g., monetary model, asset pricing model, etc.). We do this via dispersed

information, which introduces well-known difficulties. We lay out a solution strategy and compare

that strategy to alternative methodologies.

5In a different setting, Acharya, Benhabib, and Huo (2017) show that the combination of sentiment shocks and
non-invertibilities can generate hump-shaped impulse response functions as well.
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3.1 Model We consider models that are populated by a continuum of agents indexed by i ∈ [0, 1].

Let µ(i) be the density of agent i characterized by the information set at time t, denoted by Ωit.

We are interested in the class of models in which the individual optimal choice can be represented

by the dynamic expectational difference equation,

φE
[
Xit+1

∣∣Ωit

]
= ψ(L)Xit, (7)

where

Xit ≡
(
xit yt θit

)>
(8)

Here φ ≡ [φx φy φθ], is a vector of coefficients, and ψ(L) ≡ [ψx(L) ψy(L) ψθ(L)], is a vector of

square-summable lag polynomials in non-negative powers of L. xit is the choice variable under the

control of the individual agent i; yt is an endogenous aggregate variable that agents take as given,

and θit is an exogenous stochastic process specified as the sum of an aggregate component θt and

an i.i.d. individual component vit. Formally

θit = θt + vit, where θt = A(L)εt, (9)

with vit ∼ N (0, σv), εt ∼ N (0, σε), and A(L) is a square-summable polynomial in non-negative

powers of L. Our main theorem will deliver the restrictions on parameters needed to ensure

the equilibrium system of equations is non-invertible in current and past observations; i.e., that

confounding dynamics obtains in equilibrium. To close the model we need to specify a relationship

between the distribution of xit across agents, and the aggregate yt. We thus posit that

γ(L)

∫ 1

0
Xitµ(i)di = 0, (10)

where γ(L) ≡ [γx(L) γy(L) γθ(L)], is a vector of square-summable finite-degree lag polynomials in

non-negative powers of L, and we assume γx(L) 6= 0.6 As we proceed with the analysis it will be

useful to think of equation (7) as representing a demand (or supply) schedule for agent i, and (10)

as the relevant market clearing condition. However, the specific form depends on the particular

application at hand.

The expectational difference equation (7) is a dispersed information version of the system orig-

inally considered by Blanchard and Kahn (1980), and subsequently studied by Uhlig (1999), Klein

(2000) and Sims (2002), among others. Dispersed information implies that individual expectations

are heterogeneous, which implies that the aggregation in (10) will result in taking an average of ex-

pectations. In particular, model (7)-(10) can accommodate both average expectations of aggregate

variables and average expectations of individual variables.

6We make this assumption in order to keep the connection between (7) and (10) non-trivial. Allowing for γx(L) = 0,
would imply that yt is directly determined by the process θt, and, as a consequence, it would enter (7) as an exogenous
variable, essentially duplicating the role of θt in that equation.

7
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3.2 Information In our dispersed information setup, we assume that the information set Ωit of

an arbitrary agent i at time t consists of the smallest closed subspace generated by the history of

the random variable θti ≡ {θit, θit−1, ...}, and the history of the aggregate variable yt = {yt, yt−1, ...}.
Specifically, Ωi

t = θti ∨ yt, where the operator ∨ denotes the span (i.e., the smallest closed subspace

which contains the subspaces) generated by the sequences θti and yt. This notation simply suggests

that expectations will be taken optimally; i.e., they will be consistent with the prediction formulas

discussed in Section 2. In a multivariate moving-average setting, the invertible representation

achieved via canonical factorization is the smallest closed subspace containing the observables, θti
and yt (see Hoffman (1962)).

Given (7), xit will be a function of the history of idiosyncratic innovations, vit, and the aggregate

innovations, εt, namely

xit = X(L)εt + V (L)vit. (11)

In addition, aggregation implies that yt is only a function of aggregate innovations, so that

yt = Y (L)εt. (12)

The signal structure can be thus represented as(
θit

yt

)
= Γ(L)

(
σ−1ε εt

σ−1v vit

)
, Γ(L) =

[
A(L)σε σv

Y (L)σε 0

]
. (13)

We point out that our information set is in line with the typical information set assumed in the

dispersed information rational expectations literature: we provide agents with both an exogenous

signal about the aggregate unobserved state (θit), and an endogenous signal that is determined

in equilibrium (yt). The analytical convenience of the signal structure (13), for our purposes, is

that the invertibility of the matrix Γ(L) hinges only upon the zeros of Y (L). At the same time,

the structure imposes analytical discipline that is uncommon in the literature: the endogenous

signal yt can reveal perfectly the underlying state, under the appropriate parametrization of model

(7)-(10). Thus, we aim at establishing both the degree to which information remains incomplete

in equilibrium, along with the more standard existence and uniqueness conditions.

3.3 Examples We pause briefly here to note that our general setup can handle a wide variety

of models. Appendix B.7 carefully walks readers through four such examples: an RBC model, the

asset pricing model of Singleton (1987), a model with Calvo pricing and a New Keynesian Phillips

Curve, and the classical monetary models of inflation of Cagan (1956). Of course, this list is not

exhaustive but there are two common characteristics in all of the examples: [i.] shocks are Gaussian

and [ii.] the model can be written in a linear form. As with nearly all papers in this literature, our

analysis relies on linear projections being consistent with optimal conditional expectations, which

necessitates [i] and [ii].

8
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3.4 Equilibrium Definition Uncertainty is assumed to be driven by Gaussian innovations,

which, together with linearity, implies that conditional expectations are computed as optimal linear

projections. We thus have

E
(
Xit+1

∣∣Ωit

)
= P

[
Xit+1

∣∣Ωit

]
, (14)

and can apply the Wiener-Kolmogorov prediction formula (see Appendix C) to compute conditional

expectations. We are now ready to define a Rational Expectations Equilibrium for model (7)-(10).

Definition REE. A Rational Expectations Equilibrium (REE) is a stochastic process for {Xit, i ∈
[0, 1]} and a stochastic process for the information sets {Ωit, i ∈ [0, 1]} such that: (i) each agent

i, given her information set, forms expectations according to (14); (ii) {Xit, i ∈ [0, 1]} satisfies

conditions (7)-(10).

The REE can be summarized by two statements: (a) given a distribution of information sets,

there exists a market clearing distribution {Xit, i ∈ [0, 1]} determined by each agent i’s optimal

prediction conditional on the information sets; (b) given a distribution {Xit, i ∈ [0, 1]}, there exists

a distribution of information sets that provides the basis for optimal prediction. Both statements

(a) and (b) must be satisfied by the same distribution {Xit, i ∈ [0, 1]} and the same distribution of

information sets simultaneously in order to satisfy the requirements of a REE. This dual fixed point

condition is standard in rational expectations with potentially heterogeneously informed agents and

when endogenous variables convey information [see, Radner (1979) as an early example].

3.5 Weighted Sum of Expectations Before discussing our solution methodology, we give a

brief overview of the typical approach to solve model (7)-(10), which consists of two steps. The

first step is to iteratively substitute the endogenous variables xit+j and yt+j forward by leading (7)

j periods forward and aggregating over agents. The end result is expressions for xit and yt, that

are a function of expectations of the exogenous variable θt at all future horizons. The second step

is then to compute those expectations, which is non-trivial due to the fact that the law of iterated

expectations may not be operational. Most of the work that uses this approach rely on numerics

to calculate these expectations.7

Consider the expression for φxEit(xit+1). Through forward substitution, this expression con-

tains the term φxEit+1(xit+2), which in turn contains θt+2. It follows that the law of iterated

expectations (LIE) applies in this context so that φ2xEitEit+1(θt+2) = φ2xEit(θt+2), and aggrega-

tion implies φ2xĒt(θt+2) for j = 2. Intuitively, in each round of the iterative substitutions there

are terms where agent i is taking expectations of both her own future expectations and of future

average expectations. The law of iterated expectations applies to the former, so that the order of

expectations is reduced, but not to the latter.8 It should be evident at this point that the second

7Nimark (2010), and Melosi (2016) are recent examples of sophisticated numerical methods to characterize equi-
libria with dispersed information.

8Mechanically, whether LIE applies or not at each iteration depends on the position of φx in the coefficients of
the polynomial (φx + φy)j , i.e. on the set of permutations of size j of φy and φx with repetition. For instance, for
the case of j = 2, the set of terms that multiply ψθ are (φ2

y + φyφx)ĒtĒt+1(θt+2) + (φxφy + φ2
x)Ēt(θt+2).

9
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step required by the canonical approach—computing closed form solutions for the expectations

of arbitrary order—is a daunting task under dispersed information (for more details on this, see

Appendix B.5). As already remarked and discussed thoroughly in the next section, we approach

the solution from a different angle.

3.6 Solution Methodology Our aim is to characterize a REE equilibrium for model (7)-(10)

with confounding dynamics. The critical requirement for confounding dynamics to emerge is that

the information matrix Γ(L), (13), must be non-invertible at a λ ∈ (−1, 1). However, there is no

guarantee that this condition will hold. Consistent with the intuition of Townsend (1983a), our

approach is to formulate a guess for the endogenous variables that follows a generic polynomial

in the underlying shocks, and then derive conditions on the exogenous parameters that yield non-

invertibility in equilibrium.

Our main theorem (Theorem 1) and corollary in Section 5 restricts attention to functional forms

with exactly one λ inside the unit circle. The solution procedure described below is consistent with

this restriction. However, equilibrium conjectures of functional forms with multiple λ’s inside the

unit circle can be entertained within the procedure described below with appropriate modifications.

Appendix B.4 shows how to solve the exogenous signal extraction problem with multiple roots inside

the unit circle, which provides a road map for how to modify Steps 1-4 below to solve for the rational

expectations equilibrium in that case.

The following steps describe our procedure when looking for an equilibrium with confounding

dynamics.

1. Specify the guesses for xit and yt as generic polynomials of underlying shocks

xit = X(L)εt + V (L)vit, and yt = Y (L)εt. (15)

where yt has confounding dynamics, so that

Y (λ) = 0, for λ ∈ (−1, 1). (16)

2. Given the signal matrix Γ(L), obtain the so-called canonical factorization Γ∗(L) under (16)

(see Appendix C for a discussion of the canonical factorization).

3. Use Γ∗(L) together with the guesses in (15) to obtain the conditional expectations in (7) via

the Wiener-Kolmogorov prediction formula.

4. Aggregate over agents according to (10) and use the relationship between X(L) and Y (L) to

substitute X(L) with Y (L) in (7). Both the right hand side and the left hand side will now

be lag polynomial operators in εt and vit, and will thus provide the fixed point conditions for

Y (L) and V (L).

5. Derive conditions on exogenous parameters so as to ensure that a determinate stationary

10
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solutions exists, and that there exists a |λ| < 1, verifying (16). Once Y (L) is solved for, use

(10) to recover X(L).

Note that at no point in the solution procedure one needs to worry about higher-order expectations.

The so-called “higher-order thinking” that complicates the iterative approach outlined in Section

3.5 is implicit in how the guess (15) combines with the information matrix Γ(L) to provide a closed

form for the first order expectations in (7). As recognized by Townsend (1983a), by guessing a

generic lag polynomial, the higher-order beliefs are built into the guess and we do not have to track

these terms explicitly, although higher-order beliefs can be backed out of the solution in closed form.

The same solution procedure is followed when we solve for an equilibrium with full information,

with the only difference that condition (16) is not imposed, and thus does not have to be verified,

and the signal matrix Γ(L) corresponds to full information.

4 Equilibrium with Confounding Dynamics

This section establishes the main result of the paper: the existence of a rational expectations

equilibrium with confounding dynamics in a dispersed information environment.

4.1 Equilibrium with Confounding Dynamics: Main Theorem In this section we state

our main Theorem, which provides conditions under which a REE with Confounding Dynamics

exists. As stated in Section 3.2, we specify the information set as

Ωit = θti ∨ yt (17)

Agents thus observe the entire history of the exogenous process θit up to time t, together with the

history of the aggregate variable yt. In addition, the model equations (7)-(10) are both common

knowledge across agents.

An important building block in the statement of our main theorem is the full information

benchmark solution which we denote by, xit = X (L)εt+V(L)vit, and yt = Y(L)εt, where X (L), V(L)

and Y(L) are square-summable lag polynomial in non-negative powers of L. In the full information

solution, each agent i is provided with the entire history of shocks, εt and vit, up to time t. The

derivation of the full information solution is reported in Appendix A.1. Here we point out that

to ensure uniqueness (determinacy) of a full information solution, the characteristic polynomials

of the expectational difference equations for V(L) and Y(L), which are defined respectively by

φx(L) ≡ φx−ψx(L), and Φ(L) ≡ φx(L)+φy−ψy(L)L, must satisfy a standard regularity condition,

which corresponds to our Assumption 1.

Assumption 1: The polynomials φx(L) and Φ(L) each have exactly one root inside the unit circle.

It is important to note that this assumption does not correspond to a special case, nor is overly

restrictive. It amounts to restricting equilibria to stationary processes both within the cross-section

and time series dimensions of the model. Requiring Φ(L) to have one root inside the unit circle is

11
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the standard assumption necessary to yield a unique rational expectations equilibrium (e.g., Sims

(2002)) and it immediately implies that Φ(L) can be factorized as

Φ(L) = (ζ − L)Φ̃(L), (18)

where |ζ| < 1, and Φ̃(L) has no roots inside the unit circle. If the polynomial had no such roots

inside the unit circle, the RE equilibrium would not be unique; and if the polynomial had multiple

roots inside the unit circle, no stationary equilibrium would exist. Similarly, requiring φx(L) to

have one root inside the unit circle ensures that the cross-sectional distribution is well defined at

any point in time. In the equilibrium with confounding dynamics, the expectational difference

equations for V (L) and Y (L) contain the same characteristic polynomials φx(L) and Φ(L) of the

full information benchmark, and we thus also impose the regularity conditions of Assumption 1 in

Theorem 1.

Recall that the key requirement in solving for an equilibrium with confounding dynamics is

that there exists a λ ∈ (−1, 1) such that Y (λ) = 0. We are interested in finding restrictions on

exogenous parameters so that a λ that satisfies such requirement exists. Theorem 1 states our main

result.

Theorem 1. Consider model (7)-(10) with Assumption 1. Let the information sets be specified as

in Ωit = θti ∨ yt. There exists a Rational Expectations Equilibrium with Confounding Dynamics of

the form, yt = Y (L)εt, with

Y (L) = Y(L)−
(
1− τ(λ)

)(
1− λ2

) A(λ)

(1− λL)Φ̃(L)
, (19)

if there exists a λ ∈ (−1, 1) that solves

Y(λ)Φ̃(λ) =
(
1− τ(λ)

)
A(λ), (20)

where Y(L) is the full information solution, τ(λ) ≡ A(λ)2σ2
ε

A(λ)2σ2
ε+σ

2
v

, A(λ) is a function of λ that depends

only on exogenous parameters, and Y (L) in (19) has a zero inside the unit circle equal to λ.

Proof. See Appendix A.2.

Theorem 1 provides sufficient conditions for the existence of an equilibrium that belongs to a

class in which Y (L) takes a functional form with exactly one zero inside the unit circle, that is

Y (L) = (L − λ)G(L), where G(L) is a stationary lag polynomial with no zeros inside the unit

circle. Within the “exactly one zero” class, condition (20) might be satisfied by more than one

numerical value for λ. Each value corresponds to a legitimate equilibrium within the class once

substituted into (19) because the fixed-point conditions would be satisfied. These equilibria are

indexed by information, since each distinct numerical value of λ reflects how much information is

revealed in equilibrium. The notion of “multiplicity” in this scenario is not related to the well-known

indeterminacy criteria in rational expectations models, where a continuum of equilibria exists. In

12
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fact, Assumption 1 rules out that type of multiplicity here. Theorem 1 does allow for more than one

rational expectations equilibrium in the “exactly one zero” class, and such equilibria are “locally

unique” in the sense that small perturbations of the information sets will not lead to an alternative

λ-value and therefore will not diverge to an alternative rational expectations equilibrium.

4.2 Outline of Proof The proof consists of four steps and can be found in its entirety in

Appendix A.2. We briefly discuss each step, relegating tedious algebra to the appendix.

Step 1: Factorization We operationalize the key requirement that Y (λ) = 0 for λ ∈ (−1, 1) by

specifying a guess of the form Y (L) = (L−λ)G(L), where G(L) has no zeros inside the unit circle.

The first step in the proof is to then use the equilibrium guess to derive the canonical factorization

for the information set, which can be written as(
θit

yt

)
=

[
A(L)σε σv

(L− λ)G(L)σε 0

](
ε̃t

ṽit

)
, (21)

where εt = σεε̃t, vit = σvṽit, is a convenient normalization so that the variance-covariance matrix of

the innovations vector is the identity matrix. The following lemma gives the canonical factorization

for Γ(L).

Lemma 1. The canonical factorization Γ∗(z)Γ∗(z−1)T of the variance-covariance matrix Γ(z)Γ(z−1)T ,

is given by

Γ∗(z) = 1√
A(λ)2σ2

ε+σ
2
v

[
A(z)A(λ)σ2ε + σ2v σεσv

1−λz
z−λ

(
A(z)−A(λ)

)
A(λ)σ2ε(z − λ)G(z) σεσvG(z)(1− λz)

]
. (22)

Proof. See Appendix A.2.

Step 2: Expectations Equipped with the canonical factorization (22), we next derive the three

expectational terms: Eit(xit+1), Eit(yt+1), and Eit(θit+1) from direct application of the Wiener-

Kolmogorov prediction formula. The last two follow directly,

Eit

(
θit+1

yt+1

)
=
[
L−1Γ∗(L)

]
+

Γ∗(L)−1

(
θit

yt

)
.

However, the term Eit(xit+1), is substantially more involved to derive, due to the fact that the

correlation between xit+1 and θit exists not only because they both depend on εt, but they also

both depend on vit. Formally, the application of the Wiener-Kolmogorov formula leads to

Eit(xit+1) =
[
L−1gxi,(θi,y)(L)

(
Γ∗(L−1)T

)−1]
+

Γ∗(L)−1

(
θit

yt

)
,

where gxi,(θi,y)(L) is the variance-covariance generating function between xi and the information

13



Rondina & Walker: Confounding Dynamics

set. Given the equilibrium guess, such a function takes the form

gxi,(θi,y)(L) =
[
X(L)A(L−1)σ2ε + V (L)σ2v X(L)(L−1 − λ)G(L−1)σ2ε

]
.

A bit of algebra gives

L−1gxi,(θi,y)(L)
(
Γ∗(L−1)T

)−1
=
[
L−1

(
V (L)σ2v+X(L)σ2εA(λ)

)
σεσvL

−1 1−λL
L−λ

(
X(L)−V (L)A(λ)

)]
.

Acknowledging that the terms have the usual principal part around L = 0 and around L = λ, it

follows that

Eit(xit+1) =L−1
[
X(L)−X(0)

]
εt −

(
1− τ(λ)

)
1−λ2

λ(1−λL)

[
X(λ)−X(0)−

(
V (λ)− V (0)

)
A(λ)

]
εt

+ L−1
[
V (L)− V (0)

]
vit + τ(λ)

A(λ)
1−λ2

λ(1−λL)

[
X(λ)−X(0)−

(
V (λ)− V (0)

)
A(λ)

]
vit. (23)

Step 3: Fixed Point. Next, we need to derive and check the fixed-point conditions. This

amounts to algebraic manipulations that serve to get the model in the form such that existence and

uniqueness criteria can be invoked, as well as the condition Y (λ) = 0. Here we report the part of

the proof that focuses on making sure that the fixed point in information is established. The proof

consists in checking that when the equilibrium coefficients are evaluated using a λ that solves (20),

there are no other points at which Y (L) vanishes inside the unit circle. More precisely, it has to be

that there is no ξ 6= λ that solves

Y(ξ)Φ̃(ξ) = (1− τ(λ))(1− λ2) A(λ)

1− λξ
, (24)

such that |ξ| ∈ (−1, 1). If such a ξ existed, the information conveyed by yt in equilibrium would

be inconsistent with the information used to compute the expectations that are part of the fixed

point. To see this, suppose that for a given λ that solves (20), a |ξ| < 1 that satisfies (24) exists.

The Y (L) solution computed using that λ would have, by construction, another zero at ξ. If we

denote that solution by Ỹ (L) = G̃(L)(L− λ)(L− ξ), the factorization (22) would only remove the

zero associated with λ so that Step 1 above would give

Γ∗(L) = 1√
A(λ)2σ2

ε+σ
2
v

[
A(L)A(λ)σ2ε + σ2v σεσv

1−λL
L−λ

(
A(L)−A(λ)

)
A(λ)σ2ε(L− λ)(L− ξ)G̃(L) σεσvG̃(L)(L− ξ)(1− λL)

]
, (25)

Note that the determinant of Γ∗(L) in (25) vanishes at L = |ξ| < 1, so the factorization will result

in expectations that are conditioned on an information set that is inconsistent with the information

revealed in equilibrium. In other words, for the specific λ under consideration, the fixed point in

information at the heart of Theorem 1 would fail to be verified.

If no equilibria with confounding dynamics with exactly one zero can be found, one can modify

the initial guess and consider N > 1 roots inside the unit circle, looking then for a condition

analogue to (20) to deliver exactly N solutions. We restrict our attention to N = 1 for simplicity

14
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and because the full description of the space of REE with confounding dynamics is beyond the

scope of this paper, but we hope it is clear that our methods extend to the more general case.

Step 4: No Information from the Model The last thing to check to complete the proof is

to ensure that there is no information that is transmitted by a clever manipulation of the model

conditions – which are part of the information set of the agents – combined with the knowledge of

the history of θit and yt. For instance, suppose that the market clearing condition (10) is specified

so that
∫ 1
0 xitµ(i)di = yt, which means that yt is the aggregate of xit, then this would imply

X(L) = Y (L), which would result in xit − yt = V (L)vit. Because rational agents know this, they

know that the difference xit − yt is just a linear combination of the individual innovations vit. It

follows that they could, in principle, back out the realizations of vit’s by inverting V (L). More

generally, the link between X(L) and Y (L) due to (10) can be used by rational agents to obtain

additional information on the underlying innovations. For this not to happen, if one augments the

information set of the agents by xit − yt, the information matrix must still be non-invertible at λ.

The following Lemma shows that this is indeed the case for the equilibrium of Theorem 1.

Lemma 2. In the equilibrium with confounding dynamics of Theorem 1, consider the augmented

information matrix Γ̃(L), where θit

yt

xit − yt

 = Γ̃(L)

(
εt

vit

)
=

 A(L) 1

Y (L) 0

X(L)− Y (L) V (L)

( εt

vit

)
. (26)

The 2-by-2 minors of Γ̃(L) all vanish at λ.

Proof. See Appendix A.2.

The form of (19) is intuitive when contrasted with the full information counterpart. The

standard Hansen-Sargent formula subtracts off the particular linear combination of future values

of εt that minimize the agent’s forecast error. As described in Section 2, confounding dynamics

implies that a particular linear combination of past values of εt are never revealed to the agent.

In order to make a direct comparison to the full-information case transparent, set γy(L) = γx(L),

ψx(L) = 1, ψy(L) = 0, φθ = 0 and ψθ(L) = −1. According to Theorem 1, the solution under

confounding dynamics can be written as

yt =
∞∑
j=0

ζjθt+j −A(ζ)
∞∑
j=1

ζjεt+j −
(
1− τ(λ)

)
(1− λ2)A(λ)

∞∑
j=0

λjεt−j . (27)

The first two components on the right-hand side of (27) give the standard (full-information) Hansen-

Sargent formula. The third component—represented by the weighted sum
∑∞

j=0 λ
jεt−j—arises due

to confounding dynamics and is similar to the prediction formula of Section 2. Agents do not

observe the linear combination of shocks weighted by λ. Conditioning down implies that this linear

combination will (optimally) be subtracted from the Hansen-Sargent full-information equilibrium.
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The extent to which the unknown past matters depends on the imprecision of the private signal θit,

measured by 1− τ(λ); the imprecision stemming from confounding dynamics, measured by 1− λ2;
and the fixed point constant A(λ).

Equation (20) provides the condition for the existence of equilibrium (19). It is obtained by

evaluating the right-hand side of (19) at λ and setting it equal to zero. By doing so, (20) is

ensuring that once the conditioning down due to confounding dynamics is taken into account, the

λ responsible for such conditioning down must indeed be a point in which the equilibrium function

is non-invertible. Condition (20) takes an intuitive form from an informational point of view.

Note first that the LHS, Y(λ)Φ̃(λ), corresponds to the moving average part of the full information

solution evaluated at λ (a complete derivation of the full-information counterpart is presented in

the Appendix A.1). Suppose for a moment that the RHS of (20) is set to zero. If a |λ| ∈ (0, 1)

satisfying the condition existed, it would mean that the equilibrium with confounding dynamics

would take the same form as the full information equilibrium Y(L). However, equation (27) shows

that in presence of confounding dynamics the unknown past must be subtracted from the full

information equilibrium, which would make the full information solution Y(L) inconsistent with

confounding dynamics. The implication of this observation is that whenever the RHS of (20) is

made small enough, an equilibrium with confounding dynamics may fail to exist. In particular, as

the noise-to-signal ratio in private information σv/σε declines, the signal-to-noise ratio, τ(λ), gets

closer to one, and eventually leads to non-existence of an equilibrium with confounding dynamics.

We finally note that the autoregressive factor in (19), 1/(1 − λL), injects into the equilibrium

dynamics of yt the waves of over- and under-reaction or the hump-shaped imupulse depicted in

Figure 1, which are the hallmark of signal extraction under confounding dynamics. In Section 5,

in the context of a real business cycle model, we provide a description of how economic incentives

can combine with the signal extraction under non-invertibility to deliver the fixed-point condition

(20), and a hump-shaped response to shocks exclusively due to confounding dynamics.

5 Application: Business Cycle with Confounding Dynamics

In this section we apply our results to a model of business cycle fluctuations driven by productiv-

ity shocks. The purpose of this section is to analytically demonstrate the confounding dynamics

mechanism within a well established framework. To achieve this goal, we work within a linearized

model reminiscent of the islands model of Lucas (1975). We motivate this section with two obser-

vations: First, note that this application allows us to demonstrate that the sufficient conditions for

confounding dynamics are non-empty. Second, a common criticism of many models that follow the

Lucas tradition is that agents cannot see economy-wide prices: if they could, then they could infer

fundamentals perfectly and there would not be any confusion in equilibrium. Our setup does not

suffer from this criticism.9

The economy consists of a continuum of islands indexed by i ∈ [0, 1]. Each island is inhabited

by an infinitely-lived representative household, and by a representative firm, also indexed by i.

9We are not unique in this respect, see for instance Amador and Weill (2010).

16



Rondina & Walker: Confounding Dynamics

Household i supplies labor services exclusively to firm i in a decentralized competitive labor market

or, equivalently, workers cannot move across islands. Households supply labor inelastically to firms,

and the labor supply is normalized to 1. Households own capital in the economy, which is rented

out to firms in a centralized spot market. Firms use capital and labor to produce output, also

supplied in a centralized competitive spot market. Households derive utility from consuming the

output good. Output is produced by firm i according to a Cobb-Douglas technology with capital

and labor inputs – with income shares α, and 1 − α respectively, and total factor of productivity

that is firm-specific and denoted by eait , where

ait = at + vit.

The term at is common across all the islands, while vit is a productivity component that is specific

to island i. In what follows, we consider a log-linearized version of the model with full capital

depreciation and constant elasticity of intertemporal substitution, denoted by η > 0.10 Household

i sets consumption intertemporally according to the Euler equation

Eit
(
cit − cit+1 + ηrt+1

)
= 0. (28)

The intertemporal budget constraint is

(1− βα)cit + αβkit+1 = (1− α)wit + αrt − αkit, (29)

where kit+1 is the capital stock that household i is carrying into period t+ 1, wit is the wage rate,

rt is the rental rate of capital, and β ∈ (0, 1) is the subjective discount factor. The island-specific

wage rate is given by, wit = 1
1−α(ait − αrt). Aggregate capital is defined as kt+1 ≡

∫ 1
0 kit+1µ(i)di,

and market clearing implies an interest rate

rt = at − (1− α)kt. (30)

Using the household’s budget constraint at t and at t+1 to get expressions for cit and cit+1, and

leading (30) one period forward, one can substitute (28) into the Euler to obtain a second-order

difference equation for capital kit+1

αβEit
(
kit+2) + η(1− αβ)Eit

(
rt+1

)
− Eit

(
ait+1

)
= α(1 + β)kit+1 − αkit − ait, (31)

which completely characterizes the equilibrium. As remarked in Section 3.3, the model maps into

our general setting by specifying xit = kit+1, yt = rt, and θit = ait.

Finally, we assume that total factor productivity that is common across islands follows the

AR(1) process

at = ρat−1 + εt, (32)

10The fully specified model and the derivation of the log-linearization are reported in the Online Appendix B.6.
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so that A(L) = 1
1−ρL , and with ρ ∈ [0, 1]. Note that there are no moving average components in

this process, and therefore it is always invertible. It cannot be the source of confounding dynamics.

They must emerge naturally from interactions within the model.

Full Information We first derive the full information (Ωit = vti ∨ εt) solution for aggregate

capital and the interest rate. The full-information guess for island-specific capital is given by

kit+1 = K(L)εt + V(L)vit. From (30), the interest rate is immediately determined by rt = R(L)εt

and where

R(L) = A(L)− (1− α)K(L)L. (33)

The characteristic polynomial associated with equation (31) can be determined as

Φ(L) = αβ −
(
η(1− αβ)(1− α) + (1 + β)α

)
L+ αL2 = α(ζ − L)(β/ζ − L). (34)

Given that α (capital’s share of production) and β (subjective discount factor) are both less than

one, (34) contains one root inside the unit circle (ζ) and one outside (β/ζ), and their product is

always equal to β. Following the steps outlined in Section A.1, the full information equilibrium for

capital can be derived as the AR(2) process

K(L) =

ζ
αβ (1 + κ)

(1− ρL)(1− ζ
βL)

, (35)

and the interest rate takes an ARMA(2, 1) form

R(L) =
1− ζ

αβ (1 + (1− α)κ)L

(1− ρL)(1− ζ
βL)

. (36)

where κ ≡ ρ(1−ζ)(αβ/ζ−1)
(1−ρζ)(1−α) .

The standard assumptions in the RBC model imply that productivity affects the interest rate

contemporaneously, while investment in capital affects the interest rate with a one period lag. The

consequence of this timing assumption is that rt features a moving average component which we

know, from our analysis, can have important informational consequences. Suppose that the moving

average in rt was non-invertible. If agents were asked to extract the history of εt based solely on

data from rt, they would face the signal extraction problem described in Section 2. In particular,

they would not be able to recover the exact history of εt. In the full information equilibrium

reported above, agents are assumed to directly observe εt in every period, and so the equilibrium

dynamics are consistent with the information used to compute expectations even if rt itself is non-

invertible. However, what if we modify the information available to the agents by removing the

direct observation of the shocks? How would the equilibrium change? Theorem 1 can be readily

applied to address these question, to which we now turn.

Confounding Dynamics The first step in applying Theorem 1 is to specify the agents’ infor-
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mation set. Because households participate in two competitive markets every period – the labor

market and the rental market for capital – they observe the island-specific wage rate wit, and the

rental rate rt. The observation of wit and rt implies that household i can always back out ait at

time t through the expression for wit reported above. As a consequence, observing the prices of

labor and capital is equivalent to the information set

Ωit = ati ∨ rt. (37)

We also assume that households cannot observe the aggregate capital kt, so to avoid the full

revelation of at, and thus vit, which would be implied by (30).11 Following Theorem 1, existence

of confounding dynamics requires that the process for rt = R(L)εt, has the following property,

R(λ) = 0, (38)

for a λ ∈ (−1, 1). A direct application of Theorem 1 leads to the following corollary.

Corollary 1. Consider the Real Business Cycle model (30)-(32). Let the information sets be

specified as in (37). There exists a Rational Expectations Equilibrium with Confounding Dynamics

of the form, kt+1 = K(L)εt, and rt = R(L)εt, with

K(L) = K(L)−
(
1− τ(λ)

)
C(λ)

(1− ζ
βλ)(1− λ2)

(1− ζ
βL)(1− λL)

, (39)

and R(L) = A(L)− (1− α)K(L)L, if there exists a λ ∈ (−1, 1), that solves

R(λ) = −
(
1− τ(λ)

)
(1− α)C(λ)λ, (40)

where C(λ) ≡
(

1−β
1−ρλ

)(
(1−λβ)λ−τ(λ)(1−λ2)β

)
+(1−τ(λ))(1−λ2)β((1−ρζ)κ/ρ−ζ)+(1−λβ)λκ/ρ

λα(λ−β/ζ)
(
(1−λβ)(λ−ζ)−(1−λ2)τ(λ)(β−ζ)

) . K(L) and R(L)

are as in (35) and (36), τ(λ) ≡ σ2
ε

σ2
ε+(1−ρλ)2σ2

v
, and R(L) has a zero inside the unit circle equal to λ.

While the functional forms of equations (39)–(40) have the same general structure as Theorem

1 (and same interpretation), the context of the application allows us to gain additional insights into

the existence and behavior of an equilibrium with confounding dynamics.12

Table 1 reports the endogenous values of λ computed solving (40); “none” indicates that there

is no λ ∈ (−1, 1) that solves (40). In Panel 1, the elasticity of substitution, η, is held fixed at

11There are many other information structures that would preserve confounding dynamics in this setting and would
be consistent with the general specification of Section 3.1.

12Note that, as it is the case for Theorem 1, the corollary looks for an equilibrium functional form with exactly one
root (λ) inside the unit circle. In our numerical analysis, it can happen that condition (40) is satisfied by more than
one numerical value for λ. For each individual numerical value, we verify that the initial conjectured equilibrium
functional form holds, so we confirm that we have identified a rational expectations equilibrium (i.e. we implement
the fixed point check described in Step 3 of the sketch of the proof of Theorem 1). We have also verified that the
qualitative properties of the equilibrium are the same across numerical values and the overall message of our results
do not change.
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Table 1: Existence of Equilibrium with Confounding Dynamics

Panel 1: η = 1 (a) (b) (c)

Noise-Signal Ratio, σv/σε 0.1 1 4

Confounding Dynamics, λ none none 0.73

Panel 2: σv/σε = 2 (a) (b) (c)

Elasticity of Substitution, η 0.5 1 2

Confounding Dynamics, λ 0.44 none none

Existence of Equilibrium with Confounding Dynamics for numerical values of the noise-to-signal ratio in ait, σv/σε,
and the elasticity of intertemporal substitution, η. The rest of the parameters are set at β = 0.985, α = .33, ρ ≈ 1.
The entry “none” indicates that there is no λ ∈ (−1, 1) that solves (40).

1 – corresponding to log utility – and the private signal precision, σv/σε, is changed from very

informative (column (a)) to very uninformative (column (c)). An equilibrium with confounding

dynamics exists when the private signal is uninformative: column (c) with λ = 0.73. Intuitively,

if the private signal is very informative, agents will rely strongly on their private information in

forming their beliefs about aggregate productivity, which, in turn, will make the interest rate more

informative. In Panel 2, σv/σε is held fixed at 2, and the elasticity of substitution is changed from

a low level (0.5 in column (a)), to a high level (2 in column (c)). In this case, the equilibrium with

confounding dynamics only exists when the elasticity of substitution is sufficiently low: column (a),

with λ = 0.44. From the full information equilibrium (35) we see that a lower elasticity of substitu-

tion implies a more sluggish response of capital as agents are less willing to substitute consumption

for investment.13 In the presence of incomplete information, a similar sluggish adjustment prevents

capital, and thus the interest rate, to correctly reflect the underlying changes in fundamentals.

As the elasticity of substitution is increased, the more reactive response of capital results in the

interest rate dynamics fully revealing the fundamentals.

We conclude the analysis by using the case in column (c), in Panel 1 of Table 1 to study

the qualitative effects of confounding dynamics on capital and the interest rate. Figure 2 shows

the response of capital, kt+1, and the interest rate, rt, to a persistent unitary positive shock to

aggregate productivity at under full information (dashed lines) and confounding dynamics (plain

lines). Under full information, capital increases at impact and steadily climbs towards a new

persistent level (recall that ρ ≈ 1 in this example). The interest rate increases at impact because

capital is fixed at first while productivity is higher. Subsequently, the interest rate steadily declines

because of the increased capital accumulation which reduces the marginal product of capital.

In the equilibrium with confounding dynamics the impulse responses are markedly different. As

shown by the solid lines in Figure 2, the response of capital is amplified for every t and displays

13To see this, note that (34) implies ∂ζ
∂η

> 0, which in turn implies ∂K(0)
∂η

> 0 for ρ ≈ 1.

20



Rondina & Walker: Confounding Dynamics

Figure 2: Impulse Response of Capital and Interest Rate
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Impulse response of Capital, kt+1, and Interest Rate, rt, under Full Information (dash-line) and Confounding Dynam-
ics (plain-line). The parameter values are η = 1, β = 0.985, α = 0.33, ρ ≈ 1, and σv/σe = 4. For the Confounding
Dynamics equilibrium, λ = 0.73.

a hump-shaped pattern, with the peak reached in period 1 and a persistent slow decline towards

the full information long-run level. The interest rate at impact is equal to the full-information case

because capital is fixed, but it drops in negative territory in the subsequent periods because of the

larger response of capital.

The intuition as of why capital displays an amplified response under confounding dynamics can

be found in how capital behaves to ensure that the interest rate is non-invertible at λ. When η = 1,

and ρ ≈ 1, one can show that 14

R(L) ≈ 1

(1− αL)
, (41)

which means that the full information interest rate decays gradually towards zero after impact as

capital gradually climbs towards a very persistent higher level. In the equilibrium with confounding

dynamics, a moving average component with root λ appears in the process for the interest rate,

which requires the interest rate to overshoot into negative territory after impact, similarly to Panel

B in Figure 1. For that to be the case, the interest rate must decline more than the full-information

case one period after impact, which, given the timing of the model, can happen only with a higher

response of capital at impact. Using (41) together with (40) it is possible to show that the difference

between the dynamic response of capital across the two equilibria is

K(L)−K(L) ≈ (1− λ2)
(1− α)λ(1− αL)(1− λL)

. (42)

14To see this note that when η = 1, ζ/β = α, and κ = 0, so the expression immediately follows from (36) when
one recognizes that the ratio (1−L)(1− ρL) cancels for ρ ≈ 1. Also note that this relationship only holds under full
information.
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The hump shape with peak at period 1 emerges because, α+ λ > 1, and, α2 + λ2 +αλ < α+ λ, in

our numerical example. Intuitively, the persistence in the interest rate dynamics, measured by α,

combines with the persistence due to signal extraction from the interest rate, measured by λ, and

they initially reinforce each other before eventually declining.

The role of the informativeness of private signal, ait, measured by σv/σε, is also crucial in sus-

taining the amplified response and thus non-invertibility. Based just on their private signal, optimal

signal extraction would instruct agents to be conservative in estimating the innovation to aggregate

productivity, which would result in lower investment at the individual agent’s level compared to

full information and thus aggregate under-reaction of investment. However, the behavior of the

interest rate under confounding dynamics changes the average predicted innovation in at. If agents

observe a large drop in the interest rate after impact, their signal extraction effort leads them to

rationally infer that the aggregate productivity shock is larger than what their private signal alone

would suggest. In this sense, the interest rate dynamics, when used to extract information about

the innovation in productivity, acts as a perceived positive aggregate innovation in productivity.

If the private signal is sufficiently uninformative, the perceived innovation remains consistent with

rational expectations, and an equilibrium with confounding dynamics is established.

Our application starkly showcases the central insight coming from Theorem 1: allowing for

the endogeneity of signals in a dynamic context opens the door to a set of equilibria that are

usually overlooked when information is exogenously provided to the agents. Figure 2 shows that

equilibria with confounding dynamics can display a qualitative behavior of key aggregate variables

that is interesting and promising for quantitative applications. The shape and size of the response

is determined by the assumption that we look at equilibria with only one non-invertible root λ.

However, richer non-invertible conditions – such as ones with multiple roots, conjugate pairs, etc. –

would result in richer dynamics that would ensure a better fit of data (we explore a simple prediction

example with multiple roots in Appendix B.4). Finally, in order to keep things analytically tractable

and transparent, we have assumed away additional sources of frictions, thereby limiting the potential

of the model to provide quantitatively significant results. However, we envision a richer environment

with several types of frictions, such as financial frictions – which are likely to introduce stronger

sensitivity of allocations to the interest rate, or exogenous noisy signals, but where confounding

dynamics remain a major determinant of equilibrium behavior.

6 Concluding Comments

As we have shown, confounding dynamics injects persistence into impulse response functions. These

interesting dynamics are generated from a simple and optimal learning mechanism that can be

easily applied to any dynamic setting. Future work will seek to better understand the empirical

properties of confounding dynamics by incorporating them into real and nominal business cycle

models designed to be taken to data. Theoretical results of Section 5 and preliminary empirical

results show much promise. Future work will also seek to show an equivalence between the analytic

function approach advocated here and the more familiar time-domain approach. Contrasting these
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approaches in a side-by-side fashion will help to highlight the benefits of the analytic function

approach while demystifying certain aspects of it.
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A Proofs

A.1 Full Information Solution The proof of Theorem 1 makes use of the full information solution of (10)-(7).

We report the derivation of the full information solution here for completeness. We define as Full Information the

case when every agent is endowed with perfect knowledge of the aggregate and her own idiosyncratic innovations

history up to time t. Denoting the full information set by Ω̃it, the set is formally specified as

Ω̃it = vti ∨ εt. (A.1)

Here, and in the following analysis, we assume that agents know that the equilibrium relationship is given by (7)-(10).

We begin by guessing that the solution takes the form, xit = X (L)εt + V(L)vit, and yt = Y(L)εt, where X (L), V(L)

and Y(L) are square-summable lag polynomial in non-negative powers of L. Under full information, direct application

of the Wiener-Kolmogorov formula (see Appendix C) provides expressions for the relevant expectational terms,

Eit(xit+1) = [X (L)−X (0)]L−1εt + [V(L)− V(0)]L−1vit, (A.2)

Eit(yt+1) = [Y(L)− Y(0)]L−1εt, (A.3)

Eit(θt+1) = [A(L)−A(0)]L−1εt. (A.4)

The fixed point condition under full information can be found by substituting (A.2)-(A.4) into (7), so that

φx
[
X (L)−X (0)

]
L−1εt + φx

[
V(L)− V(0)

]
L−1vit + φy

[
Y(L)− Y(0)

]
L−1εt + φθ

[
A(L)−A(0)

]
L−1εt

= ψx(L)X (L)εt + ψx(L)V(L)vit + ψy(L)Y(L)εt + ψθ(L)A(L)εt + ψθ(L)vit. (A.5)

This equation defines a fixed point condition for V(L) with all the terms that multiply vit. Collecting terms that

multiply vit, multiplying both sides by L and rearranging we get

V(L)
(
φx − ψx(L)L

)
= φxV(0) + ψθ(L)L. (A.6)

Note that φx(L) ≡ φx − ψx(L)L, which, under Assumption 1, has exactly one zero inside the unit circle, which we

term ζx. We thus pick V(0) to remove such zero by setting

φxV(0) + ψθ(ζx)ζx = 0. (A.7)

Solving for V(0), substituting back into (A.6) one finally obtains

V(L) =
ψθ(L)L− ψθ(ζx)ζx

φx(L)
. (A.8)

We now focus on the fixed point for Y(L) and X (L). As remarked in the text, the fixed point condition does not

feature any components of V(L), so that one does not need to solve for the latter to obtain the former. To proceed

with the solution there are two possibilities: solve for Y(L) and then recover X (L), or viceversa. In general, both

routes are possible, but there are situations in which one direction is substantially easier than the other. This depends

on whether γx(0) 6= 0 or γy(0) 6= 0. We report here both cases. We first consider the case that works whenever

γx(0) 6= 0. We begin by manipulating condition (10) to get the following relationship between X (L) and Y(L),

X (L) = γ̃y(L)Y(L) + γ̃θ(L)A(L), (A.9)
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where γ̃y(L) = − γy(L)

γx(L)
, and γ̃θ(L) = − γθ(L)

γx(L)
. Using (A.9) to substitute for terms featuring X (L) in (A.5) one obtains

φx
[
γ̃y(L)Y(L)− γ̃y(0)Y(0)

]
L−1εt + φx

[
γ̃θ(L)A(L)− γ̃θ(0)A(0)

]
L−1εt + φx

[
V(L)− V(0)

]
L−1vit

+ φy
[
Y(L)− Y(0)

]
L−1εt + φθ

[
A(L)−A(0)

]
L−1εt = ψx(L)γ̃y(L)Y(L)εt + ψx(L)γ̃θ(L)A(L)εt

+ ψx(L)V(L)vit + ψy(L)Y(L)εt + ψθ(L)A(L)εt + ψθ(L)vit. (A.10)

Taking all the terms that multiply εt in (A.10), multiplying by L both sides and rearranging, one gets

Y(L)Φ(L) = Y(0)
(
φxγ̃y(0) + φy

)
− ξy(L), (A.11)

where

ξy(L) ≡
(
φx − ψx(L)L

)
γ̃θ(L)A(L) +

(
φθ − ψθ(L)L

)
A(L)−

(
φxγ̃θ(0) + φθ

)
A(0). (A.12)

Under Assumption 1, Φ(L) has exactly one zero inside the unit circle, denoted by ζ, which means that we can choose

Y(0) to remove such zero. We thus set

Y(0)
(
φxγ̃y(0) + φy

)
− ξy(ζ) = 0. (A.13)

Solving for Y(0), substituting into (A.11) and rearranging, one finally gets

Y(L) =
ξy(ζ)− ξy(L)

Φ(L)
. (A.14)

The expression for X (L) can then be recovered using (A.9). Next we consider the case that works whenever γy(0) 6= 0.

We begin by manipulating condition (10) to get the following relationship between X (L) and Y(L),

Y(L) = γ̂x(L)X (L) + γ̂θ(L)A(L), (A.15)

where γ̂x(L) = − γx(L)
γy(L)

, and γ̂θ(L) = − γθ(L)
γy(L)

. Using (A.15) to substitute for terms featuring Y(L) in (A.5) one obtains

φx
[
X (L)−X (0)

]
L−1εt + φx

[
V(L)− V(0)

]
L−1vit + φy

[
γ̂x(L)X (L)− γ̂x(L)X (0)

]
L−1εt

+ φy
[
γ̂θ(L)A(L)− γ̂θ(L)A(0)

]
L−1εt + φθ

[
A(L)−A(0)

]
L−1εt = ψx(L)X (L)εt + ψx(L)V(L)vit + ψy(L)γ̂x(L)X (L)εt

+ ψy(L)γ̂θ(L)A(L)εt + ψθ(L)A(L)εt + ψθ(L)vit. (A.16)

Taking all the terms that multiply εt in (A.16), multiplying by L both sides and rearranging, one gets

X (L)Φx(L) = X (0)
(
φx + φyγ̂y(0)

)
− ξx(L), (A.17)

where

Φx(L) = φx + φyγ̂x(L)− ψx(L)L− ψy(L)γ̂x(L)L, (A.18)

and

ξx(L) ≡
(
φy − ψy(L)L

)
γ̂θ(L)A(L) +

(
φθ − ψθ(L)L

)
A(L)−

(
φyγ̂θ(0) + φθ

)
A(0). (A.19)

Analogously to Assumption 1, let us assume that Φx(L) has exactly one zero inside the unit circle, denoted by ζ̂,

which means that we can choose X (0) to remove such zero. We thus set

X (0)
(
φx + φyγ̂y(0)

)
− ξx(ζ̂) = 0. (A.20)

Solving for X (0), substituting into (A.17) and rearranging, one finally gets

X (L) =
ξx(ζ̂)− ξx(L)

Φx(L)
. (A.21)

The expression for Y(L) can then be recovered using (A.15).
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A.2 Proof of Theorem 1

Step 1: Factorization We operationalize the key requirement that Y (λ) = 0 for λ ∈ (−1, 1) by specifying a guess

of the form Y (L) = (L−λ)G(L), where G(L) has no zeros inside the unit circle. The first step in the proof is to then

use the equilibrium guess to derive the canonical factorization for the information set, so that the Wiener-Kolmogorov

formula (see Appendix C) be applied. The information set can be written as(
θit

yt

)
=

[
A(L)σε σv

(L− λ)G(L)σε 0

](
ε̃t

ṽit

)
. (A.22)

where εt = σεε̃t, vit = σv ṽit, is a convenient normalization so that the variance-covariance matrix of the innovations

vector is the identity matrix. It follows that

Γ(L) =

[
A(L)σε σv

(L− λ)G(L)σε 0

]
. (A.23)

The following Lemma shows the canonical factorization for Γ(L).

Lemma A1. The canonical factorization Γ∗(z)Γ∗(z−1)T of the variance-covariance matrix Γ(z)Γ(z−1)T , where Γ(z)

is defined in (A.23), is given by

Γ∗(z) = 1√
A(λ)2σ2

ε+σ
2
v

[
A(z)A(λ)σ2

ε + σ2
v σεσv

1−λz
z−λ

(
A(z)−A(λ)

)
A(λ)σ2

ε(z − λ)G(z) σεσvG(z)(1− λz)

]
. (A.24)

Proof. Using Rozanov (1967) procedure, Γ∗(z) is computed as

Γ∗(z) = Γ(z)WλBλ(z). (A.25)

where

Wλ = 1√
A(λ)2σ2

ε+σ
2
v

[
A(λ)σε −σv
σv A(λ)σε

]
, and Bλ(z) =

[
1 0

0 1−λz
z−λ

]
. (A.26)

The form of Wλ is obtained by application of Lemma C1 in Appendix C. Solving out the matrix multiplication after

some algebra one obtains (A.24).

Step 2: Expectations Equipped with the canonical factorization (A.24), we next derive the three expectational

terms: Eit(xit+1), Eit(yt+1), and Eit(θit+1) (recall that Eit(θit+1) = Eit(θt+1)). The second and third in the list are

given by

Eit

(
θit+1

yt+1

)
=
[
L−1Γ∗(L)

]
+

Γ∗(L)−1

(
θit

yt

)
. (A.27)

Recalling that
[
L−1Γ∗(L)

]
+

=
[
Γ∗(L)− Γ∗(0)

]
L−1, and defining τ(λ) =

A(λ)2σ2
ε

A(λ)2σ2
ε+σ

2
v

one gets

Eit(θt+1) =
[
A(L)−A(0)

]
L−1εt −

(
1− τ(λ)

)
1−λ2

λ(1−λL)

[
A(λ)−A(0)

]
εt − τ(λ) 1−λ2

λ(1−λL)

[
1− A(0)

A(λ)

]
vit, (A.28)

Eit(yt+1) =
[
(L− λ)G(L) + λG(0)

]
L−1εt −

(
1− τ(λ)

)
1−λ2

(1−λL)
G(0)εt + τ(λ) 1−λ2

(1−λL)
G(0)
A(λ)

vit. (A.29)

The term Eit(xit+1), is substantially more involved to derive, due to the fact that the correlation between xit+1 and

θit exists not only because they both depend on εt, but they also both depend on vit. Formally, the application of

the Wiener-Kolmogorov formula leads to

Eit(xit+1) =
[
L−1gxi,(θi,y)(L)

(
Γ∗(L−1)T

)−1
]
+

Γ∗(L)−1

(
θit

yt

)
, (A.30)

where gxi,(θi,y)(L) is the variance-covariance generating function between xi and the information set. Given the
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equilibrium guess, such function takes the form

gxi,(θi,y)(L) =
[
X(L)A(L−1)σ2

ε + V (L)σ2
v X(L)(L−1 − λ)G(L−1)σ2

ε

]
. (A.31)

It follows that

L−1gxi,(θi,y)(L)
(
Γ∗(L−1)T

)−1
=
[
L−1(V (L)σ2

v +X(L)σ2
εA(λ)

)
σεσvL

−1 1−λL
L−λ

(
X(L)− V (L)A(λ)

)]
. (A.32)

The application of the annihilator operator requires to take the annihiland minus the principal part of its Laurent

series expansion. All the terms have the usual principal part around L = 0. However, the term containing 1−λL
L−λ also

has a principal part around L = λ, it follows that[(
1−λL
L−λ

)
1
L

(
X(L)− V (L)A(λ)

)]
+

= L−1
[(

1−λL
L−λ

)(
X(L)− V (L)A(λ)

)
+ 1

λ

(
X(0)− V (0)A(λ)

)]
− 1−λ2

L−λ
1
λ

(
X(λ)− V (λ)A(λ)

)
. (A.33)

Finally one gets

Eit(xit+1) =L−1
[
X(L)−X(0)

]
εt −

(
1− τ(λ)

)
1−λ2

λ(1−λL)

[
X(λ)−X(0)−

(
V (λ)− V (0)

)
A(λ)

]
εt

+ L−1
[
V (L)− V (0)

]
vit + τ(λ)

A(λ)
1−λ2

λ(1−λL)

[
X(λ)−X(0)−

(
V (λ)− V (0)

)
A(λ)

]
vit. (A.34)

Step 3: Fixed Point We begin by manipulating condition (10) to get the following relationship between X(L) and

Y (L),

X(L) = γ̃y(L)Y (L) + γ̃θ(L)A(L), (A.35)

where γ̃y(L) = − γy(L)

γx(L)
, and γ̃θ(L) = − γθ(L)

γx(L)
. Next we substitute the equilibrium guess and expressions (A.28),

(A.29), and (A.34) into model (7), which leads to the expression

φx

[
L−1

[
X(L)−X(0)

]
εt −

(
1− τ(λ)

)
1−λ2

λ(1−λL)

[
X(λ)−X(0)−

(
V (λ)− V (0)

)
A(λ)

]
εt

+ L−1
[
V (L)− V (0)

]
vit + τ(λ)

A(λ)
1−λ2

λ(1−λL)

[
X(λ)−X(0)−

(
V (λ)− V (0)

)
A(λ)

]
vit

]
+ φy

[[
(L− λ)G(L) + λG(0)

]
L−1εt −

(
1− τ(λ)

)
1−λ2

(1−λL)
G(0)εt + τ(λ) 1−λ2

(1−λL)
G(0)
A(λ)

vit
]

+ φθ
[[
A(L)−A(0)

]
L−1εt −

(
1− τ(λ)

)
1−λ2

λ(1−λL)

[
A(λ)−A(0)

]
εt − τ(λ) 1−λ2

λ(1−λL)

[
1− A(0)

A(λ)

]
vit
]

= ψx(L)
(
X(L)εt + V (L)vit

)
+ ψy(L)(L− λ)G(L)εt + ψθ(L)A(L)εt + ψθ(L)vit. (A.36)

As one would expect, both on the left and right hand sides there are lag polynomials that multiply εt and vit. Because

the two stochastic process are uncorrelated, the equality must hold independently for the terms that multiply εt for

those that multiply vit. Taking into account relationship (A.35), equation (A.36) thus defines two fixed points: one

for (L − λ)G(L) and one for V (L). Differently from the full information case, the fixed point for the aggregate yt

(that defined by the terms multiplying εt) also contains elements of the function V (L), more precisely the constant

V (0) − V (λ). Therefore, in order to solve for (L − λ)G(L), we need first to solve for V (L). Taking the fixed point

condition for the terms that multiply vit, multiplying both sides by L and rearranging one obtains

V (L)φx(L) =φxV (0)− φx τ(λ)A(λ)
1−λ2

λ(1−λL)

[
X(λ)−X(0)−

(
V (λ)− V (0)

)
A(λ)

]
L

− τ(λ)
A(λ)

1−λ2

λ(1−λL)

[
φyG(0) + φθ

(
A(λ)−A(0)

)]
L+ ψθ(L)L. (A.37)
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where φx(L) ≡ φx − ψx(L)L. Similarly, the fixed point for (L− λ)G(L) is

(L− λ)G(L)Φ(L) =

− φxγ̃y(0)λG(0)− φx
(
γ̃θ(L)A(L)− γ̃θ(0)A(0)

)
+ φx

(
1− τ(λ)

)
1−λ2

λ(1−λL)

[
X(λ)−X(0)−

(
V (λ)− V (0)

)
A(λ)

]
L

+ φy
[
λ−

(
1− τ(λ)

)
1−λ2

(1−λL)
L
]
G(0)− φθ

[[
A(L)−A(0)

]
−
(
1− τ(λ)

)
1−λ2

λ(1−λL)

[
A(λ)−A(0)

]
L
]

+ ψx(L)γ̃θ(L)A(L)L+ ψθ(L)A(L)L. (A.38)

where we have used (A.35) to substitute for, X(L)−X(0), and, X(L), and, Φ(L) ≡ φx(L) + φy −ψy(L)L. The next

Lemma will prove very useful.

Lemma A2. V (λ) = γ̃θ(λ).

Proof. Evaluate (A.37) at λ and rearrange to obtain

V (λ)ψx(λ)λ =

− φx τ(λ)A(λ)
[X(λ)−X(0)]− φx

(
1− τ(λ)

)(
V (λ)− V (0)

)
− τ(λ)

A(λ)

[
φyG(0)λ+ φθ

(
A(λ)−A(0)

)]
+ ψθ(λ)λ. (A.39)

Next, evaluate (A.38) at λ and rearrange to obtain

0 =− τ(λ)φx
(
X(λ)−X(0)

)
+−φx

(
1− τ(λ)

)(
V (λ)− V (0)

)
A(λ)− φyτ(λ)G(0)λ− φθ

(
A(λ)−A(0)

)
τ(λ)

+ ψx(λ)γ̃θ(λ)A(λ)λ+ ψθ(λ)A(λ)λ. (A.40)

Clearly, for (A.39) and (A.40) to hold, assuming A(λ) 6= 0, ψx(λ) 6= 0 and λ 6= 0, it must be that V (λ) = γ̃θ(λ).

We can now use Lemma A2 to substitute for V (λ) in (A.37) and (A.38). It follows that to solve for (L− λ)G(L) we

just need an expression for V (0), to which we now turn. From Assumption 1, we know that there is a root ζV that

needs to be removed for V (L) to be stationary. We achieve this by choosing the appropriate constant V (0) so that

the numerator on the right hand side of (A.37) vanishes when evaluated at ζV ,

φxV (0)− φx τ(λ)A(λ)
1−λ2

λ(1−λζV )

[
X(λ)−X(0)−

(
γ̃θ(λ)− V (0)

)
A(λ)

]
ζV

− τ(λ)
A(λ)

1−λ2

λ(1−λζV )

[
φyG(0) + φθ

(
A(λ)−A(0)

)]
ζV + ψθ(ζV )ζV = 0 (A.41)

Using (A.35) so substitute for X(λ)−X(0), and rearranging one obtain the expression

φxV (0)A(λ) = m(λ)
(
φxγ̃y(0) + φy

)
λG(0) + n(λ), (A.42)

where

m(λ) ≡ τ(λ)(1− λ2)ζV
(1− λζV )λ− τ(λ)(1− λ2)ζV

, (A.43)

and

n(λ) ≡
φθτ(λ)(1− λ2)

(
A(λ)−A(0)

)
ζV − φxτ(λ)(1− λ2)γ̃θ(0)A(0)ζV − ψθ(ζV )ζV λA(λ)

(1− λζV )λ− τ(λ)(1− λ2)ζV
. (A.44)

Next we used (A.42) in (A.38), and we also substitute X(λ)−X(0) using (A.35) to get

(L− λ)G(L) =
−λG(0)

(
φxγ̃y(0) + φy

)
H(L) + J(L)

Φ(L)(1− λL)λ
, (A.45)

where

H(L) = λ(1− λL)−
(
1− τ(λ)

)
(1− λ2)(1 +m(λ))L, (A.46)
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and

J(L) =
(
1− τ(λ)

)
(1− λ2)

[
n(λ)− φxγ̃θ(0)A(0) + φθ

(
A(λ)−A(0)

)]
L+A(0)

(
φxγ̃y(0) + φy

)
λ(1− λL)

−
[(
φx − ψx(L)L

)
γ̃θ(L) + φθ − ψθ(L)L

]
A(L)λ(1− λL). (A.47)

Under Assumption 1, Φ(L) has a zero inside the unit circle at ζ, which means that we need to choose the constant

G(0) so to cancel it. This is achieved by setting

− λG(0)
(
φxγ̃y(0) + φy

)
H(ζ) + J(ζ) = 0. (A.48)

Solving for G(0) and substituting back into (A.45) one gets

(L− λ)G(L) =
J(L)H(ζ)− J(ζ)H(L)

Φ(L)(1− λL)λ
. (A.49)

Next, recall that we defined

ξy(L) ≡ A(0)
(
φxγ̃y(0) + φy

)
−
[(
φx − ψx(L)L

)
γ̃θ(L) + φθ − ψθ(L)L

]
A(L), (A.50)

and letting

ξ̃ ≡ n(λ)− φxγ̃θ(0)A(0) + φθ
(
A(λ)−A(0)

)
, (A.51)

one can show that (A.49) can be written as

(L− λ)G(L) =
ξy(ζ)− ξy(L)

Φ(L)
−
(
1− τ(λ)

)
(1− λ2)(ζ − L)

ξ̃ − (1 +m(λ)ξy(ζ)

H(ζ)Φ(L)(1− λL)
. (A.52)

Using the factorization Φ(L) = (ζ − L)Φ̃(L), and defining

A(λ) ≡
ξ̃ −

(
1 +m(λ)

)
ξy(ζ)

H(ζ)
, (A.53)

expression (19) follows. Finally, for the solution to be consistent with the information set that we have used to derive

it, it must be that the polynomial in (19) vanishes at L = λ, which corresponds to condition (20) in the Theorem.

The last step of the proof consists in making sure that when the equilibrium coefficients are evaluated using the

λ that solves (20), there are no other points at which Y (L) vanishes inside the unit circle. More precisely, it has to

be that there is no ξ 6= λ that solves

Y(ξ)Φ̃(ξ) = (1− τ(λ))(1− λ2)
A(λ)

1− λξ , (A.54)

such that |ξ| ∈ (−1, 1). If this was not the case, then the information conveyed by yt in equilibrium would be

inconsistent with the information used to derive the expectations that we use to determine the fixed point. More

precisely, the factorization of Γ(L) would be incorrect, as Γ∗(L) in (A.24) would still be non-invertible. To see this,

suppose that λ is a solution to (20), while ξ is a solution to (A.54), and they are both inside the unit circle. Then,

the equilibrium function must have the form G̃(L)(L− λ)(L− ξ), but the factorization above only removes the zero

associated with λ. It follows that

Γ∗(L) = 1√
A(λ)2σ2

ε+σ
2
v

[
A(L)A(λ)σ2

ε + σ2
v σεσv

1−λL
L−λ

(
A(L)−A(λ)

)
A(λ)σ2

ε(L− λ)(L− ξ)G̃(L) σεσvG̃(L)(L− ξ)(1− λL)

]
, (A.55)

whose determinant still vanishes at L = ξ, so that Γ∗(L) is not the appropriate factorization. In this case one can

modify the initial guess and consider N > 1 roots inside the unit circle, looking then for a condition like (20) to

deliver exactly N solutions. We restrict our attention to N = 1 for simplicity and because the full description of the

space of REE with confounding dynamics is beyond the scope of this paper, but we hope it is clear that our methods

extend to the more general case.
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Step 4: No Information from the Model The last thing to check to complete the proof is to ensure that there

is no information that is transmitted by a clever manipulation of the model conditions – which are part of the

information set of the agents – combined with the knowledge of the history of θit and yt. For instance, suppose that

the market clearing condition (10) is specified so that
∫ 1

0
xitµ(i)di = yt, which means that yt is the aggregate of xit,

then this would imply X(L) = Y (L), which would result in xit−yt = V (L)vit. Because rational agents know all this,

they know that the difference xit − yt is just a linear combination of the individual innovations vit. It follows that

they could, in principle, back out the realizations of vit’s by inverting V (L). More generally, the link between X(L)

and Y (L) due to (10) can be used by rational agents to obtain additional information on the underlying innovations.

For this not to happen, if one augments the information set of the agents by xit − yt, the information matrix must

still be non-invertible at λ. The following Lemma shows that this is indeed the case for the equilibrium of Theorem

1.

Lemma A3. In the equilibrium with confounding dynamics of Theorem 1, consider the augmented information matrix

Γ̃(L), where  θit

yt

xit − yt

 = Γ̃(L)

(
εt

vit

)
=

 A(L) 1

Y (L) 0

X(L)− Y (L) V (L)

( εt

vit

)
. (A.56)

The 2-by-2 minors of Γ̃(L) all vanish at λ.

Proof. Matrix Γ̃(L) has three minors, whose determinants are, respectively, Y (L), Y (L)V (L), and, A(L)V (L) −
(X(L)− Y (L)). The first two minors clearly vanish at λ since, by construction, Y (λ) = 0. For the third minor, use

(A.35) to write

A(L)V (L)− (X(L)− Y (L)) = A(L)V (L)− γ̃y(L)Y (L)− γ̃θ(L)A(L) + Y (L). (A.57)

We thus need to show that

A(λ)V (λ) = γ̃θ(λ)A(λ), (A.58)

but this follows immediately from Lemma A2.

A.3 Derivation of Full Information Solution of RBC Model In terms of the notation we used in Appendix

A.1, Y(L) would correspond to R(L) in the application of Section 5, and X (L) to K(L). We first note that here

γx(L) = (1 − α)L, which means γx(0) = 0, we are thus forced to take the alternative route described in Appendix

A.1 and solve first for K(L) and leave the solution to R(L) as a straightforward corollary. Under full information we

know that Eit(kit+2) =
[
K(L) − K(0)

]
L−1εt +

[
V(L) − V(0)

]
L−1vit, Eit(kt+1) = kt+1 = K(L)εt, and Eit(ait+1) =

Eit(at+1) =
[
A(L) − A(0)

]
L−1εt. Substituting Substituting (30) into (31), using the above expressions for the

expectations, aggregating over agents, multiplying both sides by L, and rearranging, one obtains the fixed point

condition

K(L) =
αβK(0) +

(
1− η(1− αβ)− L

)
A(L)−A(0)

α(ζ − L)(β/ζ − L)
. (A.59)

To ensure stationarity we choose K(0) = 1
αβ

(
A(0) −

(
1 − η(1 − αβ) − ζ

)
A(ζ)

)
. Next substitute this expression in

(A.59), and specify A(L) = 1
1−ρL . By construction the denominator polynomial contains the factor (ζ − L), which

can be easily isolated and simplified with the same factor at the denominator, so to finally obtain

K(L) =

ζ
αβ

(
1−(1−η(1−αβ))ρ

1−ρζ

)
(1− ρL)(1− ζ

β
L)

. (A.60)

Evaluating the characteristic polynomial (34) at 1 one can show that, α(ζ−1)(β/ζ−1)/(1−α) = η(1−αβ). Adding,

ζ − 1, on both sides and rearranging one can show that, α(1− ζ)(αβ/ζ − 1)/(1− α) = η(1− αβ)− 1 + ζ. Now take
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the term 1−(1−η(1−αβ))ρ
1−ρζ , add and subtract ρζ at the numerator, to obtain

K(L) =

ζ
αβ

(1 + κ)

(1− ρL)(1− ζ
β
L)
. (A.61)

where κ ≡ ρ(1−ζ)(αβ/ζ−1)
(1−ρζ)(1−α) . It can be showed that κ = 0 for η = 1, which corresponds to the case of logarithmic

preferences, and κ > 0 (resp. < 0) when η < 1 (resp. > 1). The expression for R(L) can obtained using the

relationship, R(L) = A(L)− (1− α)K(L)L.

A.4 Proof of Corollary 1 The proof of the corollary is a straightforward application of the following lemma.

Lemma A4. Consider the Real Business Cycle model (30)-(31). Let the information sets be specified as in (37).

There exists a Rational Expectations Equilibrium with Confounding Dynamics of the form, kt+1 = K(L)εt, and

rt = R(L)εt, with

K(L) = K(L)−
(
1− τ(λ)

)
(1− λ2)

Ak(λ)

(1− λL)(ζ̃ − L)
, (A.62)

and, R(L) = A(L)− (1− α)K(L)L, if there exists a λ ∈ (−1, 1), that solves

R(λ)(λ− ζ̃) = (1− α)
(
1− τ(λ)

)
Ak(λ)λ, (A.63)

where K(L) and R(L) are the full information solutions, τ(λ) ≡ A(λ)2σ2
ε

A(λ)2σ2
ε+σ

2
v

, Ak(λ) is a function of λ that depends

only on exogenous parameters, and R(L) has a zero inside the unit circle equal to λ.

Proof. The proof follows the same steps as that of Theorem 1, with the difference that we solve for X(L) first – K(L)

in the application. Recall that

φx = αβ, φy = 1− αβ, φθ = 1, ψx(L) = α(1 + β)− αL, ψy(L) = 0, ψθ(L) = −1.

and

γx(L) = (1− α)L, γy(L) = 1, γθ(L) = −1.

Note that, although the notation adopted in the model has the two variables having different time subscripts, rt and

kt+1, they are both pre-determined at time t, and so they are both functions of possibly the infinite history of εt

up to time t. Since we are looking for an equilibrium with confounding dynamics, we operationalize the condition

R(λ) = 0 by conjecturing

R(L) = (L− λ)G(L), (A.64)

where G(L) has no zeros inside the unit circle. Because in equilibrium R(L) = A(L)− (1−α)K(L)L, the conjecture

immediately implies

A(λ) = (1− α)K(λ)λ, (A.65)

a relationship that will be useful in what follows. One important remark on (A.65) is that it implies λ 6= 0. In fact,

evaluating the expression at λ = 0, provided that K(0) is well defined, which must be the case in the solution we

want to characterize, gives A(0) = 0, which never holds by assumption. Hence, the statement of the Proposition

requires |λ| ∈ (0, 1). The information set takes the form of (A.22), where xit = ait and yt = rt, so that Eit(at+1) and

Eit(rt+1) are provided by (A.28) and (A.29), respectively. For the term Eit
(
kit+2

)
things require some extra steps.

We work under the conjecture that

kit+1 = K(L)εt + V (L)vit, (A.66)

Next, we evaluate the variance-covariance generating function between the information set and kit+1, which is

gki,(ai,r)(z) =
[
K(z)A(z−1)σ2

ε + V (z)σ2
v K(z)(z−1 − λ)G(z−1)σ2

ε

]
. (A.67)

We then use this expression, together with the canonical factorization Γ∗(z) in (A.24) in the Wiener-Kolmogorov
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formula (C.31), and following steps similar to (A.32) and (A.33) to finally get

Eit(kit+2) = L−1
[
K(L)−K(0)

]
εt −

(
1− τ(λ)

)
1−λ2

λ(1−λL)

[
K(0)−K(λ)−

(
V (0)− V (λ)

)
A(λ)

]
εt

+ L−1
[
V (L)− V (0)

]
vit − τ(λ) 1−λ2

λ(1−λL)

[
K(0)−K(λ)

A(λ)
+
(
V (0)− V (λ)

)]
vit. (A.68)

We can now use the expressions for the expectational terms to obtain a fixed point condition similar to (A.36),

α(1 + β)K(L)εt + α(1 + β)V (L)vit = αβL−1
[
K(L)−K(0)

]
εt + αβL−1

[
V (L)− V (0)

]
vit

− αβ
(
1− τ(λ)

)
1−λ2

λ(1−λL)

[
K(λ)−K(0)−

(
V (λ)− V (0)

)
A(λ)

]
εt + αβ τ(λ)

A(λ)
1−λ2

λ(1−λL)

[
K(λ)−K(0)−

(
V (λ)− V (0)

)
A(λ)

]
vit

+ αK(L)Lεt + αV (L)Lvit +A(L)εt + vit −
[
A(L)−A(0)

]
L−1εt +

(
1− τ(λ)

)
1−λ2

λ(1−λL)

[
A(λ)−A(0)

]
εt

− τ(λ)
A(λ)

1−λ2

λ(1−λL)

[
A(λ)−A(0)

]
vit + (1− αβ)

[
A(L)− (1− α)K(L)L−A(0)

]
L−1εt

+ (1− αβ)
(
1− τ(λ)

)
1−λ2

λ(1−λL)
A(0)εt − (1− αβ) τ(λ)

A(λ)
1−λ2

λ(1−λL)
A(0)vit, (A.69)

where we have used (L− λ)G(L) = A(L)− (1− α)K(L)L, and thus −λG(0) = A(0), to substitute for terms related

to G(L). The fixed point equation contains only terms related to the endogenous polynomials V (L) and K(L), and

one can proceed to solve for the fixed point as in the proof of Theorem 1. In particular, using the same steps as

in Lemma A2, one can show that A(λ)V (λ) = K(λ), and, in addition, we know that (A.65) holds, so we can set

K(λ) = A(λ)
λ(1−α) . The uniqueness of a stationary solution under Assumption 1 and condition (34), is once again

obtained by the appropriate choice of V (0) and K(0). In the end, the expression for Ak(λ), analogue to the constant

A(λ) in Theorem 1, can be simplified to

Ak(λ) =

[
(1−λβ)λ−τ(λ)(1−λ2)β

]
(1−β)A(λ)+β

(
η(1−βα)−1

)(
1−τ(λ)

)
(1−λ2)A(0)+(1−λβ)λ

(
η(1−βα)−1+ζ

)
A(ζ)

λα(1+β)
[
(1−λβ)(ζ−λ)−τ(λ)(1−λ2)(ζ−β)

] (A.70)

The condition for the existence of one |λ| ∈ (0, 1) follows from using K(L) to write R(L) and then imposing R(λ) = 0.

The same argument that we have used in the proof of Theorem 1 to argue that when the equilibrium coefficients are

evaluated using the λ that solves R(λ) = 0, there must be no other points at which R(L) vanishes inside the unit

circle, applies here as well. This completes the proof.

The proof of Corollary 1 consists in plugging A(L) = 1
1−ρL into the above expressions and rearranging terms when

possible.
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Appendix for Online Publication

B Additional Results and Derivations

B.1 Derivation of Predictions in Section 2 The critical step is the application of the annihilating operator

function [
σ2
ε(L−1 − λ)

[
(1− λL−1)σε

]−1
]
+

= σε

[
L−1 − λ
1− λL−1

]
+

. (B.1)

Multiply both numerator and denominator of the right hand side by L to get

σε

[
L−1 − λ
1− λL−1

]
+

= σε

[
1− λL
L− λ

]
+

. (B.2)

The argument is now a regular function that has an isolated singularity at L = λ. The principal part of the Laurent

series expansion is determined as

lim
z→λ

(z − λ)
1− λz
z − λ = (1− λ2). (B.3)

Using Lemma C2 and after some algebra we have[
1− λL
L− λ

]
+

=
1− λL
L− λ −

1− λ2

L− λ =
λ(L− λ)

L− λ = −λ. (B.4)

In Section B.4 we show that (B.4) generalizes to the case of N singularities.

B.2 Equivalence in Signal Extraction We need to show that the representations (1) and (5) are equivalent

in terms of unconditional forecast error variance

E
[(
εt − P

(
εt|st

))2]
= E

[(
εt − P

(
εt|zt

))2]
(B.5)

when λ2 = τ , where τ =
σ2
ε

σ2
ε+σ

2
η

. The optimal forecast P[εt|zt] is given by weighting zt according to the relative

variance of ε, P(εt|zt) =
( σ2

ε
σ2
ε+σ

2
η

)
zt = τzt and therefore,

E
[(
εt − P

(
εt|zt

))2]
=

σ2
εσ

2
η

σ2
ε + σ2

η

= (1− τ)σ2
ε . (B.6)

From (3) we know that when |λ| < 1, P(εt|st) = −λ
(
L−λ
1−λL

)
εt. It follows that

E
[(
εt − P

(
εt|st

))2]
= E

[(
εt + λ

(
L− λ
1− λL

)
εt

)2
]

= (1− λ2)2E

[(
1

1− λLεt
)2
]

= (1− λ2)σ2
ε . (B.7)

It follows that the mean-squared forecast errors (B.6) and (B.7) are equal when λ2 = τ .

B.3 Confounding Dynamics with m > n Let the signal structure be specified as in the text

st = Γ(L)ut, (B.8)

where Γ(L) is n ×m. The objective of this section is to provide a formal definition of confounding dynamics that

applies when m ≥ n, and then provide two examples for the case of m = 2 and n = 1 Denote the variance covariance

matrix of the signal vector by gss(z). The matrix gss(z) is an n×n positive-definite matrix of rank r ≤ n for |z| = 1,

and with rational elements. The final goal here is to find an appropriate factorization of gss(z) that can be used in

the Wiener-Kolmogorov prediction formula. To that end, we follow Rozanov (1967), pages 44-47, and we divide the

factorization in two steps. First, we perform a factorization that delivers a function Γ̃(z) which is n× r, and that has
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rational elements and it is analytic inside the unit circle. Next, we check whether the function Γ̃(z) has rank r for z

inside the unit circle. If not, then it means that there exists one or more point in which all the minors of order r of

Γ̃(z) vanish. For our purposes, this means that the original signal structure Γ(L) not only is non-invertible because

m > n, but also because of confounding dynamics.

We begin here by stating the existence of the function Γ̃(z) as a Lemma.

Lemma B1. A positive definite matrix function gss(z) of dimension n× n, and of rank r ≤ n, with elements which

are rational functions of z, can be represented in the form

gss(z) = Γ̃(z)Γ̃(z−1)>, (B.9)

where Γ̃(z) is n× r, and the elements in Γ̃(z) are rational with respect to z and analytic inside the unit circle.

Proof. See Rozanov (1967), pages 44-46.

The general definition of confounding dynamics immediately follows.

Definition GCD. Let st be specified as in (B.8), with m ≥ n, rank
(
gss(z)

)
= r ≤ n for |z| = 1, and let Γ̃(z) be

defined as in Lemma B1. The st process is said to display confounding dynamics if there exists some λ with |λ| < 1,

such that rank
(
Γ̃(λ)) < r .

Note first that for m = n, and r = n, one has that Γ̃(L) = Γ(L), and the above definition corresponds to the

equilibrium with confounding dynamics as defined in the main text. For the case m > n, one necessarily has that

r < m, which is a formal way to express the fact that the initial signal system is not able to perfectly reveal the history

of ut. Matrix Γ̃(z) of Lemma B1 performs a linear combination of the m elements in ut into at most r orthogonal

components, so to have a representation of the signals st that can be used for optimal prediction. However, such

linear combination might come short of providing r orthogonal components when the rank of Γ̃(z) is less than r for

some z inside the unit circle. When that happens, it means that the r orthogonal components are combined in such

a way that their information is confounded into fewer than r orthogonal components, i.e. confounding dynamics are

present. Once Γ̃(z) is obtained and the set of λ’s from the definition above identified, the derivation of the canonical

factorization Γ∗(z) follows the steps outlined in Appendix C.3. The canonical factorization Γ∗(z) finally returns a

representation of st into r orthogonal components, with variances that provide the least-squares prediction.

We present two examples of signal systems with n = 1 and m = 2, which contains confounding dynamics.

Example 1. Consider a process st specified as

st = (L− λ)(εt + vt), (B.10)

where εt
iid∼ N (0, σε), vt

iid∼ N (0, σv), and λ < 0. Here Γ(L) is the 1× 2 matrix

Γ(L) =
(

(L− λ)σε (L− λ)σv

)
, (B.11)

and the variance-covariance generating function is,

gss(z) = (z − λ)(z−1 − λ)
(
σ2
ε + σ2

v

)
. (B.12)

Here r = 1 since gss(z) is non-zero when evaluated at |z| = 1. Applying Lemma B1, one has that Γ̃(L) =
√
σ2
ε + σ2

v(L−
λ). Application of Definition B.3 informs that the 1×2 process st has confounding dynamics provided that λ ∈ (−1, 1).

Using the procedure in Appendix C.3 one can show that the canonical factorization here is Γ∗(L) =
√
σ2
ε + σ2

v(1−λL).

Plugging this into the Wiener-Kolmogorov formula for the mean-squared error minimizing prediction P(εt|st) one

obtains,

P(εt|st) = −τ λ

1− λLst, (B.13)
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where τ ≡ σ2
ε

σ2
ε+σ

2
v

, as usual. Equation (B.13) clearly shows how the two sources of non-invertibility combine: the

dimension m > n turns into the signal-to-noise coefficient τ , while confounding dynamics turn into the dynamic

operator − λ
1−λL . In higher dimensional system the combination takes a substantially more convoluted form.

Example 2. Consider a process st specified as

st = −λεt + εt−1 + vt, (B.14)

where, once again, εt
iid∼ N (0, σε), vt

iid∼ N (0, σv), and λ < 0. Here Γ(L) is the 1× 2 rectangular matrix

Γ(L) =
(

(L− λ)σε σv

)
. (B.15)

The variance-covariance generating function is

gss(z) = σ2
ε(z − λ)(z−1 − λ) + σ2

v. (B.16)

According to Lemma B1, we have that Γ̃(L) = (1− λ̂L)σw, where λ̂ is a solution to the quadratic equation

λσ2
ε −

(
(1 + λ2)σ2

ε + σ2
v

)
λ̂+ λσ2

ε λ̂
2, (B.17)

and σ2
w is determined by σ2

wλ̂ = λσ2
ε . To see this note that gss(z) can be rewritten as

gss(z) = σ2
ε(1− zλ)(1− z−1λ) + σ2

v, (B.18)

and we are looking for the factorization

σ2
ε(1− zλ)(1− z−1λ) + σ2

v = σ2
w(1− zλ̂)(1− z−1λ̂). (B.19)

Note that (B.19) can be written as

(1 + λ2)σ2
ε + σ2

v − λσ2
εz
−1 − λσ2

εz = σ2
w(1 + λ̂2)− σ2

wλ̂z
−1 − σ2

wλ̂z. (B.20)

Matching coefficients we get two conditions in two unknowns, namely

σ2
wλ̂ = λσ2

ε , (B.21)

and

σ2
w(1 + λ̂2) = (1 + λ2)σ2

ε + σ2
v. (B.22)

Using (B.21) to substitute for σw in (B.22) one gets the quadratic equation (B.17).15 Note that our candidate Γ̃(L)

satisfies the requirements of Lemma B1 independently of which root λ̂ is chosen. However, the quadratic form (B.17)

is such that there is always one root inside and one root outside the unit circle. The roots are

λ̂ =
(1 + λ2)σ2

ε + σ2
v ±

√(
(1 + λ2)σ2

ε + σ2
v

)2 − 4λ2σ4
ε

2λσ2
ε

. (B.23)

Taking the limit of (B.23) for σv → 0, which corresponds to the case presented in Section 2, one has that

lim
σv→0

λ̂+ = λ−1, lim
σv→0

λ̂− = λ, (B.24)

where the first root is the one associated with the “+” sign for the discriminant term, and the second root the one

associated with the “−” sign. Suppose that we set λ̂ = λ̂+ in Γ̃(L), then according to our Definition GDC the process

st has confounding dynamics whenever |λ̂+| > 1, which is always the case when |λ| < 1. The canonical factorization

in this case is Γ∗(L) = (1 − λ∗L)σw, where λ∗ = λ̂−, and σ2
w solves (B.21). Application of the Wiener-Kolmogorov

15This procedure is similar to the one outlined in Sargent (1987), Chapter XI, pages 300-302.
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formula then leads to

P (εt|st) = − λ∗

1− λ∗Lst = −λ∗
(

L− λ
1− λ∗L

)
εt −

λ∗

1− λ∗Lvt. (B.25)

Expression (B.25) shows that the confounding dynamics hallmark is retained even in presence of exogenous noise.

The factor that multiplies εt in (B.25) has the same format as the factor in (3), with the only difference that the

impact is now scaled by λ∗, and the autoregressive root is also λ∗. One important difference in the rectangular

case is that the additional noise term also appears in the prediction function, which is represented by the term that

multiplies vt in (B.25). The noise term has a persistent effect on the prediction, with the same autoregressive root

as the εt term.

Definition CGD and Examples 1 and 2 show that confounding dynamics can be present in any type of signal structure.

The signal matrix structure with m = n that we employ in the main text is analytically convenient, and, at the same

time, expressions (B.13) and (B.25) suggest that it is without loss of generality, in so far as the purpose is to

qualitatively characterize confounding dynamics.

B.4 N Non-Invertible Roots The following proposition describes the prediction formula for the innovations of

a process with N non-invertible roots.

Proposition B1. Let

st =

N∏
i=1

(L− λi)εt. (B.26)

with |λi| < 1, for i = 1, ..., N . The least squares prediction P(εt|st) is given by

P (εt|st) =

N∏
i=1

λi
L− λi
1− λiL

εt. (B.27)

Proof. The first step in the proof is to figure out the canonical factorization of gss(z) when st is as in (B.26). Rozanov

(1967) method applies directly here so that

Γ∗(z) = σε

N∏
i=1

(1− λiL). (B.28)

The application of the Wiener-Kolmogorov prediction formula results in the following

Π0(z) =

[
σ2
ε

N∏
i=1

(λi − z−1)
[
σε

N∏
i=1

(1− λiz−1)
]−1
]
+

( N∏
i=1

(1− λiL)
)−1

. (B.29)

The next Lemma is useful in solving for the annihilating operator.

Lemma B2. [
N∏
i=1

λi − z−1

1− λiz−1

]
+

=
N∏
i=1

λi. (B.30)

The proof of the Lemma is by induction, repeatedly using Lemma C2 to obtain a solution for N = 1, 2, 3, .....

Application of the Lemma leads to

Π0(z) =

N∏
i=1

λi
1− λiz

. (B.31)

The final result of the proposition then immediately follows.

Figure 3 shows the impulse response of the prediction formula for N = 2 and N = 3. As one can see, the mechanical

alternation of over-reaction and under-reaction typical of the N = 1 case is lost here. In fact, longer and asymmetric

cycles become clearly possible.
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Figure 3: Prediction Impulse Response
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Impulse response of prediction formula P (εt|st)), for N = 2 (solid blue line), and N = 3 (dashed red line). The
non-invertible roots are λ1 = −0.3 + 0.75i, λ2 = −0.3− 0.75i, and λ3 = −0.75.

B.5 Weighted Sum of Expectations Representation We consider equation (7) with φθ = 0, ϕx(L) = 1,

ϕy(L) = 0, ϕθ(L) = −1, and equation (10) with γx(L) = γy(L), and γθ(L) = 0, so that

xit = φxEit(xit+1) + φyEit(yt+1) + θit (B.32)

and

yt =

∫ 1

0

xitµ(i)di. (B.33)

Under the form we have assumed for θit, we always have that for j ≥ 1,

Eit+j(θit+j+1) = Eit+j(θt+j+1), (B.34)

a property that will keep the notation below manageable. To initiate the iterative substitution, take (B.32) one

period forward so that

xit+1 = φxEit+1(xit+2) + φyEit+1(yt+2) + θit+1. (B.35)

Next aggregate (B.35) and apply (B.33) to get

yt+1 = φxĒt+1(xit+2) + φyĒt+1(yt+2) + θt+1. (B.36)

Now we can use (B.35) and (B.36) to substitute for xit+1 and yt+1 in (B.32) to get

xit = φxEit
[
φxEit+1(xit+2) + φyEit+1(yt+2) + θit+1

]
+ φyEit

[
φxĒt+1(xit+2) + φyĒt+1(yt+2) + θt+1] + θit

= φxφxEit(xit+2) + φxφyEit(yt+2) + +φyEit
[
φxĒt+1(xit+2) + φyĒt+1(yt+2)] + (φx + φy)Eit(θt+1) + θit

(B.37)
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where, in the second line, we applied the Law of Iterated Expectations (LIE), when possible, and we made use of

(B.34). Next we want to substitute for xit+2 and yt+2, so we carry (B.32) two periods forward so that

xit+2 = φxEit+2(xit+3) + φyEit+2(yt+3) + θit+2. (B.38)

aggregate (B.38), and apply (B.33) to get

yt+2 = φxĒt+2(xit+3) + φyĒt+2(yt+3) + θt+2. (B.39)

Now we can use (B.38) and (B.39) to substitute for xit+2 and yt+3 in (B.37) to get

xit = φxφxEit
[
φxEit+2(xit+3) + φyEit+2(yt+3) + θit+2

]
+ φxφyEit[φxĒt+2(xit+3) + φyĒt+2(yt+3) + θt+2]

+ φyEit
{
φxĒt+1

[
φxEit+2(xit+3) + φyEit+2(yt+3) + θit+2

]
+ φyĒt+1[φxĒt+2(xit+3) + φyĒt+2(yt+3) + θt+2]

}
+ (φx + φy)Eit(θt+1) + θit

= φxφxφxEit(xit+3) + φxφxφyEit(yt+3) + φxφyφxEit
[
Ēt+2(xit+3)

]
+ φxφyφyEit

[
Ēt+2(yt+3)

]
+ φyφxφxEit

{
Ēt+1

[
Eit+2(xit+3)

]}
+ φyφxφyEit

{
Ēt+1

[
Eit+2(yt+3)

]}
(B.40)

+ φyφyφxEit
{
Ēt+1

[
Ēt+2(xit+3)

]}
+ φyφyφyEit

{
Ēt+1

[
Ēt+2(yt+3)

]}
+ φxφxEit(θt+2) + φxφyEit(θt+2) + φyφxEit

[
Ēt+1(θt+2)

]
+ φyφyEit

[
Ēt+1

(
θt+2

)]
+ (φx + φy)Eit(θt+1) + θit.

(B.41)

Proceeding in such manner up to some arbitrary time J , one ends up getting a weighted sum of expectations of

different orders about θt+j , for j = 1, ..., J+1, while the remaining endogenous variables xit+J+1 and yt+J+1 multiply

coefficients that tend to zero as. Letting J →∞ and aggregating over agents, one finally obtains

yt =

∞∑
j=1

Pjφx
[
(φx + φy)jĒj(θt+j)

]
(B.42)

where Ēj(θt+j) stands for the jth order average expectation of θt+j , and, for notational convenience, we let Ē0(θt) = θt.

The way the operator Pjφx works is visible in the first four terms of the last line of (B.41) where j = 2. In the first

and second term, φx appears as the first coefficient, which results in the expectation being of the first order. In the

last two terms, φy appears as the first coefficient, which results in the expectation being of the second order. In

subsequent substitution the pattern that results in the reduction of some of the higher order compounding is quite

complex, as the combination of relative positions of φx and φy in the coefficients grows at the power of 2n, so we

omit it here. For instance, if one considers the expression at the 3rd iteration, i.e. for J = 3, then one has

yt =
[
terms with xit+4, yt+4

]
+
(
φxφxφx + φxφxφy

)
Ēt(θt+3) + +

(
φxφyφx + φxφyφy

)
Ēt
[
Ēt+2(θt+3)

]
+
(
φyφyφy + φyφyφx + φyφxφy + φyφxφx

)
Ēt
{
Ēt+1

[
Ēt+2(θt+3)

]}
+
(
φxφx + φxφy

)
Ēt(θt+2) +

(
φyφx + φyφy

)
Ēt
[
Ēt+1

(
θt+2

)]
+ (φx + φy)Ēt(θt+1) + θt. (B.43)

Note that, together with the direct average expectation Ēt(θt+3), and the expectation of third order (the average

expectation of the average expectation of the average expectation) Ēt
{
Ēt+1

[
Ēt+2(θt+3)

]}
, expression (B.43) also

displays the average expectation at t of the average expectation at t+ 2, Ēt
[
Ēt+2(θt+3)

]
. Substituting further, other

combinations of higher order expectations compounding appear too. In summary, equation (B.43) shows that, in

presence of dispersed information, the pattern of higher order expectations can be extremely cumbersome, and so

the requirement of the canonical approach to work out each possible combination of expectations quickly becomes

prohibitive.

B.6 Real Business Cycle Application: Full Model and Log-Linearization The economy is structured

in a continuum of islands indexed by i ∈ [0, 1]. Each island is inhabited by a representative household i and by a

representative firm i. Household i supplies labor services exclusively to firm i in a decentralized competitive labor
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market. Labor of household i is the only labor productive in firm i. Households own capital in the economy and rent

it out to firms in a centralized spot market. Capital, expressed in consumption goods, is productive in all the firms

across the islands. The problem for Household i can be then written as

max
Cit,K

(s)
it+i

Eit


∞∑
j=0

βt
C

1− 1
η

it − 1

1− 1
η


with β ∈ (0, 1), η > 0, and subject to a sequence of budget constraints of the form

Cit +K
(s)
it+i − (1− δ)K(s)

it = Wit +RtK
(s)
it , t = 0, 1, 2, ...,

where Wit is the wage rate in the labor market of island i and Rt is the rental rate of capital in the centralized capital

market. Households are assumed, for the moment, to supply labor N
(s)
it inelastically at the prevailing wage rate. We

normalize the labor supplied by household i to N
(s)
it = 1. K

(s)
it+i denotes the total capital that household i is bringing

into period t + 1. The superscript (s) stands for “supply” to denote the fact that the capital that household i is

bringing into period t+ 1 will be the amount supplied by the same household in the centralized rental capital market

at t+ 1. Symmetrically, in what follows the superscript (d) will stand for demand.

The problem for the representative firm in island i is

max
N

(d)
it ,K

(d)
it

Yit −WitN
(d)
it −RtK

(d)
it

where

Y
(s)
it = Zit

(
K

(d)
it

)α (
N

(d)
it

)1−α
, α ∈ (0, 1) .

Output Yit is supplied in the centralized market for output. In other words, in this economy there is only one

consumption good centrally traded. The price of the consumption good at t is normalized to 1. Output is produced

by firm i according to a Cobb-Douglas technology with labor and capital inputs and a technological factor Zit that

can be specified as

Zit = eat+εit .

The term at is common across all the islands, while εit is a productivity component that is specific to island i. The

existence of a decentralized labor market together with an island specific productivity results in a labor income with

an idiosyncratic risk component against which households would like to insure. We assume that markets for state

contingent securities are not available, so that household i has to bear the labor income risk. We will also assume

that the idiosyncratic labor income risk is not present in steady state, which means that the wealth distribution of

the economy in steady state would be degenerate and an economy-wide representative household will exist. This is

relevant at the linearization stage, as one would want to linearize the first order conditions for each island around

the same steady state.

The first order conditions for firm i are

(1− α)Y
(s)
it = N

(d)
it Wit

and

αY
(s)
it = K

(d)
it Rt,

so that the wage bill in island i is equal to a fraction (1− α) of output in the island, while the capital bill is the

remaining fraction α. In addition, under the assumption that N
(s)
it = 1, market clearing for the decentralized labor

market in island i, N
(s)
it = N

(d)
it , implies

Y
(s)
it = Zit

(
K

(d)
it

)α
and (1− α)Y

(s)
it = Wit.

As a consequence, the participation of household i to the labor market, i.e. the observation of Wit, will result in the
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knowledge of Y
(s)
it . This will always be the case, independently of the equilibrium behavior of the variables.

The Euler equation for household i is

1 = Eit

[
β

(
Cit
Cit+1

) 1
η

(Rt + (1− δ))

]
,

while, using the first order conditions from firm i and the market clearing for the labor market, the budget constraint

can be re-written as

Cit +K
(s)
it+1 = (1− α)Y

(s)
it + (Rt + (1− δ))K(s)

it .

In addition, a no-Ponzi condition is assumed so that the solution path to the steady state has to satisfy the usual

transversality condition.

To close the model in terms of market interactions we need to specify the market clearing condition for capital

and for output, formally ∫ 1

0

K
(d)
it di =

∫ 1

0

K
(s)
it di

and ∫ 1

0

Citdi+

∫ 1

0

(
K

(s)
it+1 − (1− δ)K(s)

it

)
di =

∫ 1

0

Y
(s)
it di.

We will work with a log-linearized version of the economy around a steady state that is derived under the

assumption that the long run unconditional average of Zit is 1. Notice that this implies that the economy does not

display a growth trend in steady state. This is without loss of generality for the purpose of the application.

For any variable Xt we define xt as Xt = X∗ext , where X∗ is the steady state value of Xt. The log-linearized

economy is given by the following set of equations (details available from the authors upon request). The budget

constraint for household i is(
1

α
(ρ+ δ)− δ

)
cit + k

(s)
it+1 =

1− α
α

(ρ+ δ) y
(s)
it + (ρ+ δ) rt +

1

β
k
(s)
it (B.44)

where ρ = 1
β
− 1 is the rate of time preference. The Euler equation for household i is

Eit [(cit − cit+1) + ηβ (ρ+ δ) rt+1] = 0. (B.45)

Output supplied by firm i is given by

y
(s)
it = at + εit + αk

(d)
it , (B.46)

and the rental rate for capital is

rt = at + εit + (α− 1) k
(d)
it . (B.47)

The demand for capital of firm i is

k
(d)
it = wit − rKt (B.48)

and the wage rate is

wit = y
(s)
it . (B.49)

The market clearing condition for aggregate capital is∫ 1

0

k
(d)
it di =

∫ 1

0

k
(s)
it di = kt (B.50)

while the market clearing for aggregate output is(
1

α
(ρ+ δ)− δ

)
ct + (kt+1 − (1− δ) kt) =

1

α
(ρ+ δ) yt (B.51)

where

ct =

∫ 1

0

citdi, yt =

∫ 1

0

y
(s)
it di.
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The set of equations (B.44)-(B.51) completely describe the equilibrium dynamics of the linearized economy, conditional

on the sequence of cross sectional distributions of information sets implicit in the expectational operator Eit for

i ∈ [0, 1] and ∀t. Setting δ = 1, one obtains the model equations of Section 5.

B.7 Applications In this section we present examples of four applications that can be cast into our model

specification (10)-(7). The list is by no means exhaustive.

Example 1: Real Business Cycle with Capital. This example corresponds to the application in the main

text. In a standard real business cycle model with capital, in presence of dispersed information about the aggregate

productivity shock and incomplete insurance markets, the linear dynamics of capital around the steady state can be

expressed as

αβEit
(
kit+2) + η(1− αβ)Eit

(
rt+1

)
− Eit

(
ait+1

)
= α(1 + β)kit+1 − αkit − ait, (B.52)

which is a standard second-order difference equation in capital, and where

rt+1 =

∫ 1

0

ait+1µ(i)di− (1− α)

∫ 1

0

kit+1µ(i)di, (B.53)

is the market-clearing rental rate for capital. Here β is the subjective discount factor, α is the capital share in the

Cobb-Douglas output good technology, η is the elasticity of intertemporal substitution, and ait is the individual

productivity shock.16 Model (B.52)-(B.53) maps into (7)-(10) by setting xit = kit+1, yt = rt, θit = ait, and

φ =
(
αβ η(1− αβ) −1

)
, ψ(L) =

(
α(1 + β)− αL 0 −1

)
, γ(L) =

(
(1− α)L 1 −1

)
.

Example 2: Calvo Pricing and New Keynesian Phillips Curve. Nimark (2008) considers a dispersed informa-

tion version of the optimal Calvo pricing problem that micro-founds the New Keynesian Phillips Curve popularized

Woodford (2003b) and Gal̀ı (2008). Nimark (2008) shows that the optimal price for an optimizing firm is

p∗it = (1− βϑ)(pt +mcit) + βϑEit
(
p∗it+1

)
, (B.54)

where pt is the aggregate price level, defined as pt = ϑp∗t + (1 − ϑ)pt−1, with p∗t ≡
∫ 1

0
p∗itµ(i)di, and mcit is the

individual marginal cost at time t specified as mcit = mct + vit so that
∫ 1

0
mcitµ(i)di = mct. The parameter β is the

discount factor for price setters, while ϑ measures the probability of resetting ones’ price in a given period. Define

pit ≡ ϑp∗it + (1 − ϑ)pt−1, which maintains
∫ 1

0
pitµ(i)di = pt. The individual and aggregate price level dynamics can

then be written as,

βϑE
(
pit+1

∣∣Ωit) = pit − ϑ
(
1− 2ϑβ + β

)
pt + (1− ϑ)pt−1 − ϑ(1− βϑ)mcit. (B.55)

with

pt =

∫ 1

0

pitµ(i)di. (B.56)

Equations (B.55)-(B.56) maps into (7)-(10) by setting xit = pit, yt = pt θit = mcit, and

φ =
(
βϑ 0 0

)
, ψ(L) =

(
1 −ϑ

(
1− 2ϑβ + β

)
+ (1− ϑ)L −ϑ(1− βϑ)

)
, γ(L) =

(
1 −1 0

)
.

As recognized by Nimark (2008), in the presence of dispersed information a compact representation of the New

Keynesian Phillips Curve cannot be obtained. However, once a solution for pt is derived from (B.55)-(B.56), inflation

dynamics are immediately given by πt = pt − pt−1.

Example 3: Dynamic Asset Pricing. Singleton (1987) presents a dynamic asset pricing model motivated by

the market microstructure of the U.S. bond market, which features a competitive, Walrasian market structure with

a single security that is traded among speculative investors and nonspeculative or liquidity traders at the price

16Equations (B.52) and (B.53) are derived as part of the application of Section 5. See that section for details.

45



Rondina & Walker: Confounding Dynamics

pt.
17 The security is assumed to pay a constant coupon every period, which we normalize to zero. Purchases of

the security are financed by borrowing at the constant rate r, and the wealth of investor i evolves according to

wit+1 = zitpt+1 − (1 + r)(zitpt − wit). The ith investor is assumed to have a one-period investment horizon and to

rank alternative investment strategies according to the utility Eit
[
−exp(−%wit+1)

]
, where % is the constant coefficient

of absolute risk aversion. Singleton (1987) shows that the demand schedule for the risky asset takes the form

zit =
1

%ν
Eit(pt+1)− 1 + r

%ν
pt, (B.57)

where ν is the variance of pt+1 and is set to be an exogenous constant. Singleton (1987) assumes that the net supply

of the asset, denoted by nt, is specified as

nt = ft + ϑpt. (B.58)

The shock to net asset supply ft arises from nonspeculative traders (such as the U.S. Treasury, the Federal Reserve,

financial intermediaries), that attempt to satisfy macroeconomic objectives for technical reasons related to the inter-

mediation process. Nonspeculative traders are assumed to respond positively to an increase in prices; thus ϑ > 0.

Investors in setting their strategy zit are assumed to receive a private signal, fit = ft + vit, about the shock to the

net asset supply. Market clearing is therefore given by∫ 1

0

zitµ(i)di = nt. (B.59)

Model (B.57)-(B.59) maps into (7)-(10) by setting xit = zit, yt = pt, θit = fit, and

φ =
(

0 1 0
)
, ψ(L) =

(
%ν 1 + r 0

)
, γ(L) =

(
1 −ϑ −1

)
.

Example 4: Classical Monetary Models of Inflation. In classical monetary models of inflation, money

demand takes the form popularized by Cagan (1956),

mit − pt = −α
(
Eit(pt+1)− pt

)
, (B.60)

where mit is nominal money demand by agent i, pt is an aggregate price index, and α > 0. The money supply Mt is

assumed to possess persistent dynamics specified as

Mt = ρMt−1 + ft, (B.61)

where ft is a money supply shock process. The money market clearing condition is then

Mt =

∫ 1

0

mitµ(i)di (B.62)

Agents are assumed to receive a private signal, fit = ft+vit, about the money supply shock. Equations (B.60)-(B.62)

map into (7)-(10) by setting xit = mit, yt = pt, θit = fit, and

φ =
(

0 −α 0
)
, ψ(L) =

(
1 −(1 + α) 0

)
, γ(L) =

(
1− ρL 0 −1

)
.

B.8 Exogenous Noise and Confounding Dynamics In this section we show that confounding dynamics can

be modeled also in the presence of exogenous signals that make the signal structure “rectangular,” as opposed to

“square,” which is the case considered in the main analysis. There are two ways to preserve heterogeneous information

in equilibrium—by continually adding exogenous noise until the noise terms overwhelm all signals, and/or by proving

that there exists a zero inside the unit circle of the equilibrium as is done in Theorem 1. These categories are not

17Several papers have since used a similar setup to study a broad range of asset pricing issues (e.g., Bacchetta and
van Wincoop (2006)).
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mutually exclusive. Combinations of the two can certainly exist. In this section we first show that the standard way

of introducing exogenous aggregate noise will not lead to the characteristic over- and under-reaction of the impulse

response which is the hallmark of confounding dynamics.18 We then show that confounding dynamics can coexist

with superimposed exogenous noise, and when they do, the characteristic over- and under-reaction reemerges. For

transparency, we work within the stylized version of the generic rational expectations model [γ̃y(L) = 1, ψx(L) = 1,

ψy(L) = 0, and φx = 0, so that ζ = φy], and we modify the private signal of an arbitrary agent i to,19

εit = εt + vit. (B.63)

All agents also observe the endogenous variable with superimposed exogenous noise η̃t,

ỹt = yt + η̃t. (B.64)

The noise η̃t is assumed to be of the form η̃t = U(L)ηt, where U(L) is a ratio of two lag polynomials in non-negative

powers of L, and ηt is i.i.d. Gaussian with distribution N(0, ση). Define the following relative signal-to-noise ratios,

τη ≡
1

1 + σ2
η/σ2

v + σ2
η/σ2

ε

, τv ≡
1

1 + σ2
v/σ2

η + σ2
v/σ2

ε

, (B.65)

and note that limση→∞ τv = τ = σ2
ε/(σ

2
ε + σ2

η). Following our solution strategy, we posit a candidate solution

yt = Qε(L)εt + Qη(L)ηt. In order to achieve a closed-form solution, we follow Taub (1989) in specifying U(L) =

Qε(L) − Qη(L), such that ỹt = Qε(L)
(
εt + ηt

)
.20 The following proposition characterizes analytically a rational

expectations equilibrium for the exogenous noise economy, without confounding dynamics.

Proposition B2. Consider model (7)-(10) with Assumption 1 and let γ̃y(L) = 1, ψx(L) = 1, ψy(L) = 0, and φx = 0,

so that ζ = φy. Let the information sets be specified as Ωit = εti ∨ ỹt. Define λ(L) ≡ (LA(L)− ζτvA(ζτv))/(L− ζτv),

and let U(L) = λ(L). There exists a unique rational expectations equilibrium,

yt =

(
λ(L) + ζτη

λ(L)− λ(ζ)

L− ζ

)
εt + ζτη

(
λ(L)− λ(ζ)

L− ζ

)
ηt. (B.66)

which does not yield confounding dynamics, provided that,

λ(z) + ζτη
λ(z)− λ(ζ)

z − ζ , (B.67)

is invertible for all z inside the unit circle.

Proof. The first step in the proof is to recognize that the expectations of agent i in equilibrium take the form of a

linear combination of current and past realizations of the observed variables εit and p̃t,

Eit(yt+1) = π̂1(L)εit + π̂2(L)ỹt, (B.68)

where π̂1(L) and π̂2(L) are assumed to be representable as ratios of two finite-degree lag polynomials with zeros

18Superimposing exogenous noise is a common practice in most of the recent (and past) literature on dispersed
information and aggregate fluctuations [e.g., Grossman and Stiglitz (1980), Wang (1993), Makarov and Rytchkov
(2012), Angeletos and La’O (2013)].

19Assuming the private signal is εit, rather than θit, greatly simplifies the algebra in characterization of the equilibria
of Propositions B2 and B3. All the key steps in the equilibrium derivation would go through if one were to consider
θit.

20The reasons for choosing a convenient form for U(L) are two-fold. First, it streamlines the analytical derivation
of the canonical factorization of the variance-covariance matrix. Second, it ensures that a solution to the equilibrium
exists that takes the form of a finite order ARMA representation, or, in the frequency domain jargon, of an analytic
function that can be represented as the ratio of two polynomials. The conditions for the existence of an ARMA
solution in presence of exogenous noise superimposed to endogenous variables is an open active area of research, see
Huo and Takayama (2016).
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outside the unit circle. The guess for the equilibrium price is specified as

yt = Qε(L)εt +Qη(L)ηt. (B.69)

Substituting (B.68) in the equilibrium equation (7) and rearranging one obtains

yt =
π1(L)

1− π2(L)
εt +

π2(L)

1− π2(L)
η̃t, (B.70)

where π1(L) ≡ βπ̂1(L) + A(L), and π2(L) ≡ βπ̂2(L). Recalling that ỹt = yt + η̃t, the information set of agent i can

be then expressed as

(
εit

ỹt

)
=

(
1 1 0

π1(L)
1−π2(L)

0 U(L)
1−π2(L)

) εt

vit

ηt

 = Ξ(L)

 εt

vit

ηt

. (B.71)

Denoting the entire history of the signal vector by ω, under the assumption that U(L) = π1(L) the variance-covariance

generating function for the signal vector is

gss(z) =

 σ2
ε + σ2

v
π1(z

−1)

1−π2(z−1)
σ2
ε

π1(z)
1−π2(z)

σ2
ε

π1(z)π1(z
−1)

(1−π2(z))(1−π2(z−1))
(σ2
ε + σ2

η)

 . (B.72)

In addition, the covariance generating function between the signal vector and y, the variable to be predicted, can be

written as

gys(z) =
(

π1(z)
1−π2(z)

σ2
ε

π1(z)π1(z
−1)

(1−π2(z))(1−π2(z−1))
(σ2
ε + π2(z)σ2

η)
)

. (B.73)

Applying the usual Wiener-Kolmogorov prediction formula one sees that[
π̂1(L) π̂2(L)

]
=
[
L−1gpω(L)

(
Ξ∗(L−1)T

)−1
]
+

Ξ∗(L)−1, (B.74)

where Ξ∗(z) is the canonical factorization of the variance-covariance matrix gss(z) such that gss(z) = Ξ∗(z)Ξ∗(z−1)T .

Following Rozanov (1967) and Taub (1989), the factorization can be shown to take the form

Ξ∗(z) =

(
σz

σ2
ε
σy

0 π1(z)
1−π2(z)

σy

)
, (B.75)

where σ2
y ≡ σ2

ε + σ2
η, and σ2

z ≡ σ2
v +

σ2
εσ

2
η

σ2
ε+σ

2
η

. Using (B.73) and (B.75) one can show that

π̂1(L) =
σ2
εσ

2
η

σ2
yσ2
z

(
π1(L)

L
− π1(0)

L

)
, (B.76)

and

π̂2(L) =
1− π2(L)

π1(L)

[
−
σ2
η

σ2
y

(
π1(L)

L
− π1(0)

L

)
− π1(0)

L(1− π2(0))

]
+

1

L
. (B.77)

Given our definition of π1(L), equation (B.76) is a fixed point equation that can be solved independently for π̂1(L).

Define τv ≡
σ2
ησ

2
ε

σ2
ησ

2
v+σ

2
vσ

2
ε+σ

2
ησ

2
ε

=
σ2
εσ

2
η

σ2
yσ

2
z

, the fixed point condition results in

π̂1(L) = τv
−βπ̂1(0) +A(L)−A(0)

L− τvβ
. (B.78)

Because τvβ < 1, to ensure covariance-stability of π̂1(L) we need to pick π̂1(0) so to cancel the unstable root at the

denominator. This is achieved by setting π̂1(0) = β−1
(
A(τvβ) − A(0)

)
. Substituting this into (B.78), a closed form

solution for π̂1(L) is obtained. Using π1(L) = βπ̂1(L) +A(L) one finally obtains

π1(L) =
LA(L)− τvβA(τvβ)

L− τvβ
. (B.79)
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We let λ(L) ≡ π1(L) which agrees with the statement of Proposition B2. Turn now to condition (B.77). Using

π2(L) = βπ̂2(L) the fixed point condition can be expressed as

1

1− βπ̂2(L)
=

1

π1(L)

(
Lπ1(L)− βκ(L)

L− β

)
, (B.80)

where

κ(L) ≡
σ2
η

σ2
p

(
π1(L)− π1(0)

)
+

π1(0)

1− βπ̂2(0)
. (B.81)

Note that κ(L) is a known function except for the constant π̂2(0). Since β < 1, in order for the left hand side of (B.80)

to be covariance-stationary, the right hand side should vanish at L = β. The constant π̂2(0) can be conveniently

chosen to achieve this by setting π1(β)− κ(β) = 0. Solving this condition for π̂2(0) and plugging the expression back

into (B.80) one obtains
1

1− βπ̂2(L)
= 1 + βτη

π1(L)− π1(β)

π1(L)(L− β)
, (B.82)

where τη ≡ σ2
vσ

2
ε

σ2
ησ

2
v+σ

2
vσ

2
ε+σ

2
ησ

2
ε

. Using π2(L) = βπ̂2(L) ,one can use the resulting expression together with π1(L) to

substitute in (B.69) and obtain (B.66) in Proposition B2. To complete the proof we need to argue why λ(L) +

βτη
λ(L)−λ(β)

L−β = 0 must have no solution inside the unit circle. Note that, from (B.75), the determinant of the matrix

Ξ∗(L) is proportional to π1(L)
1−π2(L)

, and, for the matrix to be a canonical factorization, the determinant must not vanish

inside the unit circle. Because π1(L)
1−π2(L)

= λ(L) + βτη
λ(L)−λ(β)

L−β , for Ξ∗(L) to be the appropriate factorization, the

right hand side must not vanish inside the unit circle.

The form of the equilibrium (B.66) can be best understood by studying the limiting functions of the noise terms.

Note that the polynomial λ(L) takes the form of a Hansen-Sargent formula involving A(L) and τvζ. To understand

its role, suppose that the public information ỹt is made uninformative so that τη → 0 (i.e. ση →∞). The equilibrium

would then just be equal to yt = λ(L)εt, which is the first term in (B.66) with τv equal to τ . As soon as public

information is made informative two additional terms appear, one which captures the additional information about εt

transmitted by the public information, and the other that injects the public noise ηt into the equilibrium price. Note

that the two terms enter the equilibrium price with the same dynamics, which is a consequence of the assumption

U(L) = λ(L). This process is also characterized by a Hansen-Sargent formula involving λ(L) and τηζ. When public

information is made arbitrarily precise, i.e. ση → 0 so that τη = 1 then (B.66) corresponds to the full information

equilibrium.

A comparison with Theorem 1 reveals that the additional noise of Proposition B2 coming from (B.64) implies

that condition (20), which guarantees heterogeneous beliefs are preserved in equilibrium, is no longer necessary. In

fact, (B.67) is an explicit assumption that there are no zeros inside the unit circle, which is the standard assumption

in models with exogenous noise. In turn, this implies that the equilibrium cannot support confounding dynamics.

To see this more clearly, suppose that A(L) = 1 + θL. Applying the results of Appendix A.1, the full information

solution can be immediately obtained as the MA(1) process,

yt = (1 + θζ)εt + θεt−1. (B.83)

Substituting into the equilibrium (B.66) under the assumption that, θ < 1/
(
1− ζ(τv + τη)

)
, so that the invertibility

of (B.67) holds, yields,

yt = (1 + θζ(τv + τη))εt + θεt−1 + ζτη(1 + θ)ηt. (B.84)

The impulse response dynamics of yt in (B.84) to a shock εt are entirely consistent with the optimal prediction

formula associated with the standard signal extraction problem described in Section 2. The impulse response to a

shock in εt is smaller than the full information counterpart at impact, since τv + τη < 1, but otherwise unchanged

(i.e. it matches the dashed dynamics of Figure 1).
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Next we want to characterize a solution with both exogenous noise and confounding dynamics. Under the same

assumptions about the private and public information signals, we posit a candidate solution yt = Q̃ε(L)εt+ Q̃η(L)ηt,

and let U(L) = Q̃ε(L)− Q̃η(L). The following proposition holds.

Proposition B3. Consider model (7)-(10) and let γ̃y(L) = 1, ψx(L) = 1, ψy(L) = 0, φx = 0, so that ζ = φy. Let

the information sets be specified as Ωit = εti ∨ ỹt. Define λ̃(L) ≡ (1 − λL)(LA(L) − λA(λ))/(L − λ), for some real

constant λ. There exists a Rational Expectations Equilibrium with Confounding Dynamics of the form

yt =
L− λ
1− λL

(
(L− ζ(1− τη))λ̃(L)− τηλ̃(ζ)

(L− ζ)(L− ζ(1− τη)τ)
εt + τη

(1− τ)ζλ̃(L)− (L− ζτη)λ̃(ζ)

(1− τ)(L− ζ)(L− ζ(1− τη)τ)
ηt

)
, (B.85)

if, and only if, there exists a λ ∈ (−1, 1) that solves

(1− τ)λ̃
(
(1− τη)τζ

)
+ ττηλ̃(ζ) = 0. (B.86)

Proof. The candidate solution for the equilibrium in Proposition B3 is specified as

yt = Q̃ε(L)εt + Q̃η(L)ηt. (B.87)

The first part of the proof is equivalent to that of Proposition B2, up until equation (B.73). We then need to

conjecture confounding dynamics, which we do by assuming that there exists a λ ∈ (−1, 0) such that

π1(λ)

1− π2(λ)
= 0. (B.88)

If this is the case then the matrix Ξ∗(z) in (B.75) harbors confounding dynamics since its determinant vanishes at λ.

For notational convenience we assume that π1(λ)
1−π2(λ)

= π(L)(L − λ), which embeds conjecture (B.88). To obtain the

canonical factorization of gss(z) we apply the steps in Appendix C.3 to Ξ∗(z) and we obtain

Ξ∗∗(z) =
1√

σ2
ε + σ2

v

(
σ2
ε + σ2

v 0

σ2
ε(z − λ)π(z) σyσzπ(z)(1− λz)

)
. (B.89)

For convenience define π̃2(z) = (z−λ)π2(z), and using Ξ∗∗(z) in the Wiener-Kolmogorov formula (B.74) one obtains

the following two fixed point conditions in π(L) and π̃2(L) after some straightforward rearrangements:

π(L)
[
(L− λ)(L− ζτ)− (1− τ)π̃2(L)L

]
= ζτλπ(0) +A(L)L, (B.90)

and

π̃2(L)

L− λ =
ζτη(1− λL)h1(L)− (L− ζτ)

σ2
v

σ2
zσ

2
y

ζ
(1−τ)h2(L)

(L− ζ(1− τη))(1− λL)h1(L)− ζ σ2
v

σ2
zσ

2
y
h2(L)

, (B.91)

where

h1(L) ≡ ζτλπ(0) +A(L)L, (B.92)

and

h2(L) ≡ π(0)(L− λ)

(
τη − π̃(0)

σ2
η

λ

)
−

σ2
η

(1− τ)

1− λ2

λ

(
A(λ) + ζτπ(0)

)
. (B.93)

Substituting (B.91) into (B.90) one obtains

π(L)(L− λ) =
(L− ζ(1− τη))(1− λL)h1(L)− ζ σ2

v
σ2
zσ

2
y
Lh2(L)

(1− λL)(L− ζ)(L− ζτ(1− τη))
. (B.94)
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We require π(L)(L − λ) to be stationary, which means that the two unstable roots at the denominator, ζ < 1 and

ζτ(1− τη) < 1, need to be removed. In addition, our conjecture of confounding dynamics requires the left hand side

expression to vanish at L = λ. We can achieve all this by the appropriate choice of constants π(0), λ̃2(0) and λ. We

thus have the following three conditions in three unknowns,

(λ− ζ(1− τη)(1− λ2)h1(λ)− ζ σ2
v

σ2
zσ2
y

λh2(λ) = 0, (B.95)

σ2
ε(1− λζ)h1(ζ)− ζh2(ζ) = 0, (B.96)

(1− ζτ(1− τη)λ))h1(ζτ(1− τη)) + ζ
σ2
ε

σ2
zσ2
y

= 0. (B.97)

We first note that λh2(λ) = τηh1(λ)(1 − λ2), which implies that condition (B.95) is satisfied when π(0) = A(λ)
ζτ

.

Substituting this into the expressions for h1(L) and h2(L) one sees that,

h1(L) = LA(L)− λA(λ), and h2(L) =
A(λ)

ζτ
(L− λ)

(
τη − π̃(0)

σ2
η

λ

)
. (B.98)

Using these expressions into (B.96) one obtains(
τη − π̃(0)

σ2
η

λ

)
= τσ2

ε
(1− λζ)

A(λ)(ζ − λ)

(
λA(λ)− ζA(ζ)

)
(B.99)

Next define

λ̃(L) ≡ (1− λL)
LA(L)− λA(λ)

L− λ , (B.100)

and note that condition (B.97) is satisfied when

λ̃(ζτ(1− τη)) + λ̃(ζ)
σ4
ε

σ2
zσ2
y

= 0, (B.101)

which corresponds to (B.86) once we multiply both sides by σ2
v/σ

2
ε . With some additional straightforward algebra

is then possible to solve for π(L) and π2(L), and using the conditions, Q̃ε(L) = π(L), and Q̃η(L) = π1(L) π2(L)
1−π2(L)

,

equation (B.85) obtains.

The building block of this equilibrium is λ̃(L), which can be directly compared to the λ(L) function of Proposition

B2. As discussed above, the second term of a Hansen-Sargent prediction formula has an informational interpretation

in that it amounts to what must be subtracted away from a complete-information equilibrium. The conditioning

down associated with λ̃(L) of Proposition B3 is due to the endogenous zero, λ determined by (B.86); while the

conditioning down associated with λ(L) of Proposition B2 is due to the exogenous noise term, τv.

Most importantly, Proposition B3 reintroduces confounding dynamics. Under the specification A(L) = 1 + θL,

the equilibrium (B.85), when (B.86) is satisfied,21 is given by

yt =
L− λ
1− λL

((
θ − λ(1 + λθ)− λθζ(τη + (1− τη)τ)

)
εt − λθεt−1 − ζτηλθηt

)
, (B.102)

Comparing expression (B.102) to (B.84), both contain an MA(1) term for εt, and a constant coefficient on ηt.

21Equilibria (B.66) and (B.85) do not necessarily exist simultaneously for the same parameter values. However,
our objective here is to compare the qualitative features of the equilibrium dynamics across the two different classes
of equilibria they represent, one with exogenous noise only, the other with both exogenous noise and confounding
dynamics. For such exercise, the space of existence across parameter values has a secondary relevance.
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However, for equilibrium (B.102), the MA(1) term is multiplied by the factor (L − λ)/(1 − λL) which, as seen in

Section 2, injects the dynamic pattern typical of confounding dynamics.22 The impulse response dynamics of yt

in (B.102) to a shock εt is smaller than the full information counterpart at impact and it matches the qualitative

behavior of confounding dynamics in Figure 1.23 Taken together, Propositions B2 and B3 show that it is the learning

mechanism due to confounding dynamics, rather than the one due to exogenous noise, that injects persistence in

innovations, and, simultaneously, an amplification pattern that resembles waves of optimism and pessimism.

22For θ > 0, one can show that λ ∈ (−1, 0) when (B.86) is satisfied.
23To see this one need to show that the impact coefficient in (B.102) is smaller than the impact coefficient in (B.83),

which corresponds to −λ
(
θ−λ(1 +λθ)−λθζ(τη + (1− τη)τ)

)
< 1 + θζ. This can be easily shown using the property

that when θ > 0, −λθ ∈ (0, 1).
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C Technical Preliminaries for Frequency Domain Methods

Elementary results concerning the theory of stationary stochastic processes and the residue calculus are necessary

for grasping the z-transform approach (also known as frequency domain approach) advocated in the main text. The

purpose of this appendix is to offer readers unfamiliar with the methods used to derive our results the minimal

background necessary so that the paper is self-contained. This appendix introduces important theorems that are

relatively well known but is by no means exhaustive. Interested readers are directed to Brown and Churchill (2013)

and Whittle (1983) for good references on complex analysis and stochastic processes. Sargent (1987) provides a good

introduction to these concepts and discusses economic applications.

C.1 Variance-Covariance Generating Function Consider two-covariance stationary linear-Gaussian multi-

variate processes, {ωt, t ∈ Z} and {st, t ∈ Z}, where the vector dimensions are n × 1, and m × 1, respectively. Let

Υωs(j) denote the m× n unconditional covariance matrix between ωt and st−j , for j ∈ Z, formally

Υωs(j) ≡ E(ωts
T
t−j)− E(ωt)E(sTt−j), (C.1)

where T denotes transpose. The variance-covariance generating function is then defined as

gωs(z) ≡
∞∑

j=−∞

Υωs(j)z
j , (C.2)

where gωs(z) is an m×n matrix. When ωt = st the function is referred to as the auto-covariance generating function

and denoted by gωω(z), or gss(z). An extensive treatment of the properties of the variance-covariance generating

function can be found in Sargent (1987).

C.2 Wold Fundamental Representation Theorem Much of the analysis in the main text is conducted in the

space of lag polynomials without specific functional forms assumed (e.g., ARMA(m,n)). The Wold representation

theorem allows for such a general specification.

Theorem C1. [Wold Representation Theorem] Let {st} be any (n× 1) covariance stationary stochastic process with

E(st) = 0. Then it can be uniquely represented in the form

st = ηt + Γ∗(L)ŵt (C.3)

where Γ∗(L) is a matrix polynomial in the lag operator, and
∑∞
j=0 Γ∗jΓ

∗
j
T is convergent. The process ŵt is n-variate

white noise with E(ŵt) = 0, E(ŵtŵ
′
t) = In and E(ŵtŵ

′
t−m) = 0 for m 6= 0. The process Γ∗0ŵt is the innovation in

predicting st linearly from its own past:

Γ∗0ŵt = st − P(st|st−1, st−2, ...), (C.4)

where P(·) denotes linear projection. The process ηt is linearly deterministic; there exists an n×1 vector c0 and n×n
matrices Cs such that without error ηt = c0 +

∑∞
s=1 Csηt−s and E[ŵtη

′
t−m] = 0 for all m.

The Wold representation theorem states that any covariance stationary process can be written as a linear com-

bination of a (possibly infinite) moving average representation where the innovations are the linear forecast errors

for st and a process that can be predicted arbitrarily well by a linear function of past values of st. The theorem is

a representation determined by second moments of the stochastic process only and therefore may not fully capture

the data generating process. For example, that the decomposition is linear suggests that a process could be deter-

ministic in the strict sense and yet linearly non-deterministic; Whittle (1983) provides examples of such processes.

The innovations in the Wold representation are generated by linear projections which need not be the same as the

conditional expectation (E[st|st−1, st−2, ...]). However, when working with linear Gaussian stochastic processes, as is

standard in the rational expectations literature, the best conditional expectation coincides with linear projection.

53



Rondina & Walker: Confounding Dynamics

As discussed in detail in the paper, the innovations derived from the Wold representation are an essential element

of a rational expectations equilibrium in that they define the information set obtained from conditioning on current

and past st’s. Using the language of Rozanov (1967), the innovation sequence {ŵt−j}∞j=0 of (C.4) are fundamental

for the sequence {st−j}∞j=0 if the Hilbert space generated by the observables is equivalent (in mean-square norm) to

the Hilbert space generated by the innovations.

C.3 Canonical Factorization Let st be specified as

st = Γ(L)ut, (C.5)

where Γ(L) is a lag polynomial matrix with square-summable coefficients, and ut is a m× 1 vector of i.i.d. Gaussian

innovations with zero mean and variance-covariance matrix Σu. Testing for fundamentalness in a process like (C.5)

can be done by checking for the invertibility of Γ(z) for |z| < 1.24 While testing for fundamentalness is straightforward,

deriving the unique fundamental Wold representation is not. Here we rely on powerful factorization theorems. The

following definition is taken from Whittle (1983). If g(z) is a square matrix function of z, then the canonical

factorization

g(z) = Γ∗(z)Γ∗(z−1)T , (C.6)

will refer to a factorization in which both Γ∗(z) and its inverse have valid expansions in non-negative powers of z

for |z| ≤ 1; and Γ∗(z−1)T and its inverse have expansions in non-positive powers of z for |z| ≥ 1. The canonical

factorization of the variance-covariance generating function delivers the Wold fundamental representation of the time

series. It yields both the fundamental moving average Wold representation, and the autoregressive representation

that is consistent with span {st−j}∞j=0 being equivalent to span {ŵt−j}∞j=0.

There does not exist a general method to compute analytically the canonical factorization of any arbitrary matrix

g(z). Several methods that have been proposed work well when the knowledge of the structure of the matrix g(z)

is used. Rozanov (1967), page 47, proposes an algorithm to obtain Γ∗(z) from Γ(L) that can be used when Γ(L) is

known to have a finite number of isolated singularities λ1, λ2, ..., λp inside the unit circle. In the case of n = 2, and

one singularity at |λ| < 1, one has that

Γ∗(z) = Γ(z)WλBλ(z), (C.7)

where Bλ(z) is the Blaschke matrix

Bλ(z) =

[
1 0

0 1−zλ
z−λ

]
. (C.8)

The constant matrix Wλ is a unitary matrix, so that W−1
λ = WT

λ , whose columns are the left singular vectors of the

system matrix Γ(z) evaluated at λ. While the inverse of Γ(λ) does not exist, the pseudo-inverse (also known as the

Moore-Penrose inverse) always exists and it is given by

Γ(λ)+ = UΣV T , (C.9)

where V ΣUT is the singular value decomposition of the matrix Γ(λ). The left singular vectors of Γ(λ) are the

columns of U . The following result, which can be showed by using widely available formulas for the singular value

decomposition of 2 by 2 matrices is used in the proof of Lemma A1.

Lemma C1. Consider the matrix

N =

[
c d

0 0

]
. (C.10)

Then the matrix U in the singular value decomposition of N = V ΣUT , is

U =
1√

c2 + d2

[
cd
|d| − cd

|c|
d2

|d|
c2

|c|

]
. (C.11)

24There are many ways to test for fundamentalness, see Fernandez-Villaverde, Rubio, Sargent, and Watson (2007).
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C.4 Riesz-Fischer Theorem

Theorem C2. [Riesz-Fischer] Let D(
√
r) denote a disk in the complex plane of radius

√
r centered at the origin.

There is an equivalence (i.e. an isometric isomorphism) between the space of r-summable sequences
∑
j r

j |fj |2 <∞
and the Hardy space of analytic functions f(z) in D(

√
r) satisfying the restriction

1

2πi

∮
f(z)f(rz−1)

dz

z
<∞

where
∮

denotes (counterclockwise) contour integration around D(
√
r). An analytic function satisfying the above

condition is said to be r-integrable.25

The Riesz-Fischer theorem ensures that one can work either in the space of infinite sequence of square-summable

matrix coefficients {..., Q−1, Q0, Q1, ...}, or in the space of complex-valued analytic functions Q(z) =
∑∞
j=−∞Qjz

j ,

since the two spaces are equivalent.

C.5 Wiener-Kolmogorov Prediction Formula Consider the problem of computing the linear least-squares

estimate for ωt+j , denoted by ω̂t+j , conditional on the realized history {st+j}∞j=0. The solution to the problem

consists in the sequence of real valued matrices {Πj}∞j=0, or, equivalently, the complex-valued function Π(z), such

that

ω̂t+j =

∞∑
j=0

Πjst−j . (C.12)

We assume that all the processes have zero unconditional mean. The following result is a version of the Wiener-

Kolmogorov prediction formula taken from Whittle (1983).

Theorem C3. Suppose that gss(z) has the canonical factorization

gss(z) = Γ∗(z)Γ∗(z−1)T . (C.13)

then the generating function Πj(z) =
∑∞
i=0 Πiz

i of the optimal estimate ω̂t+j is

Πj(z) =
[
z−jgωs(z)

(
Γ∗(z−1)T

)−1]
+

Γ∗(z)−1. (C.14)

Proof. The minimization of the the means squared forecast errors E(ω̂t−ωt)2 leads to the set of first order conditions

∞∑
k=0

Υss(i− k) = Υωs(i− j), for i = 0, 1, 2, .... (C.15)

Multiplying both sides by zi and adding over all integral i’s one gets the Wiener-Hopf relationship

Πj(z)gss(z) = z−jgωs(z) + h(z), (C.16)

where h(z) =
∑−1
i=−∞ hiz

i, is an unknown matrix series in negative powers of z. If we post-multiply both sides by[
Γ∗(z−1)T

]−1
, we obtain

Πj(z)Γ
∗(z) = z−jgωs(z)

[
Γ∗(z−1)T

]−1
+ h(z)

[
Γ∗(z−1)T

]−1
, (C.17)

Note that both sides can be represented as matrix series in powers of z whose coefficients have to obey the above

relationship. By construction, the left hand side has only positive powers of z, while the second term of the right

hand side has only negative powers of z. If we apply the annihilating operator on both sides we thus get

Πj(z)Γ
∗(z) =

[
z−jgωs(z)

[
Γ∗(z−1)T

]−1]
+
. (C.18)

25This theorem is usually proved for the case r = 1 and for functions defined on the boundary of a disk. For further
exposition see Sargent (1987).
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The last step consists in post-multiplying both sides by Γ∗(z)−1 so that (C.14) obtains.

The requirement that Γ∗(z) should be the canonical factorization of gss(z) is essential in two steps. First, from it we

ensure that
[
Γ∗(z−1)T

]−1
has an expansion in non-positive powers of z, which means that the term h(z)

[
Γ∗(z−1)T

]−1

disappears when the annihilating operator is applied. Second, we also ensure that Γ∗(z)−1 has an expansion in non-

negative powers of z, which result in Π(z) having an expansion in non-negative powers of z only, as required.

C.6 Whiteman (1983) Solution Method: Existence and Uniqueness of REE We use the existence and

uniqueness criteria of Whiteman (1983) developed for linear, rational expectations equilibria. The following works

through the three relevant cases–existence but no uniqueness, no existence, and existence-uniqueness. Consider the

following generic rational expectations model

ζζ̃Etyt+1 − (ζ + ζ̃)yt + yt−1 = θt, θt = A(L)εt, εt
iid∼ N(0, 1) (C.19)

where εt is assumed to be fundamental for θt (i.e., A(L) is assumed to have a one-sided inverse in non-negative

powers of L). Following the solution principle, we will look for a solution that is square-summable in the Hilbert

space generated by the fundamental shock ε, yt = Q(L)εt (third tenet). If we invoke the optimal prediction formula

(C.14), then Etyt+1 = [Q(L)/L]+εt = L−1[Q(L) − Q0]εt. Together with the fourth tenet of the solution principle

(i.e., that the rational expectation restrictions hold for all realizations of ε), this implies that (C.19) can be written

in z-transform as

z−1[Q(z)−Q0]ζζ̃ − (ζ + ζ̃)Q(z) + zQ(z) = A(z)

Multiplying by z and rearranging delivers

Q(z) =
zA(z) +Q0

(ζ − z)(ζ̃ − z)
(C.20)

Appealing to the Riesz-Fischer Thereom, square-summability (stationarity) in the time domain is tantamount to

analyticity of Q(z) on the unit disk. The function Q(z) is analytic at z0 if it is continuously (complex) differentiable

in an open neighborhood of z0.26 Any rational function (f(z)/g(z)) where f(·) and g(·) are polynomials will be

analytic on the unit disk provided g(z) 6= 0 at any point inside the unit circle. The extent to which this is true for

Q(z) depends upon the parameters ζ and ζ̃.

As shown in Whiteman (1983), there are three cases one must consider. First, assume that |ζ| > 1 and |ζ̃| > 1.

Then (C.20) is an analytic function on |z| < 1 and the representation is given by

yt =

[
LA(L) +Q0

(ζ − L)(ζ̃ − L)

]
εt (C.21)

For any finite value of Q0, this is a solution that lies in the Hilbert space generated by {θt} and satisfies the tenets

of the solution principle. Thus, we have existence but not uniqueness because Q0 can be set arbitrarily.

The second case to consider is |ζ̃| < 1 < |ζ|. In this case, the function Q(z) has an isolated singularity at ζ,

implying that Q(z) is not analytic on the unit disk. In this case, the free parameter Q0 can be set to remove the

singularity at ζ by setting Q0 in such a way as to cause the residue of Q(·) to be zero at ζ

lim
z→ζ

(ζ̃ − z)Q(z) =
ζA(ζ) +Q0

ζ − ζ̃
= 0

Solving for Q0 delivers Q0 = −ζA(ζ). Substituting this into (C.21) yields the following rational expectations equi-

26Analytic is synonymous with holomorphic, regular and regular analytic.
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librium

yt =

[
LA(L)− ζA(ζ)

(ζ − L)(ζ̃ − L)

]
εt. (C.22)

The function Q(z) is now analytic and (C.22) is the unique solution that lies in the Hilbert space generated by {θt}.
The solution is the ubiquitous Hansen-Sargent prediction formula that clearly captures the cross-equation restrictions

that are the “hallmark of rational expectations models” [Hansen and Sargent (1980)].27

The final case to consider is |ζ| < 1 and |ζ̃| < 1. In this case, (C.20) has two isolated singularities at ζ and ζ̃,

and Q0 cannot be set to remove both singularities.28 Hence in this case, there is no solution in the Hilbert space

generated by {θt} and we do not have existence.

C.7 Annihilating Operator Let H(z) =
∑+∞
m=−∞Hmz

m. The following Lemma is due to Hansen and Sargent

(1980).

Lemma C2. Let H(z) be a regular function in |z| < 1, with at most a finite number of singularities z1, z2, ..., zk

in |z| < 1. Let π1(z), π2(z),..., πk(z) denote the principal parts of the Laurent series expansion of H(z) around the

singularities. Then

[H(z)]+ = H(z)−
k∑
j=1

πj(z). (C.23)

The Laurent series expansion of H(z) around the singularity zj is

H(z) =

+∞∑
m=−∞

Hm(z − zj)m, (C.24)

and its principal part is given by

πj(z) =

−1∑
−∞

Hm(z − zj)m. (C.25)

To compute the principal part at zj , first compute the constant π̂j as

π̂j = lim
z→zj

(z − zj)H(z), (C.26)

and then set

πj(z) = π̂j(z − zj). (C.27)

In this section, we first establish notation and introduce relevant mathematical definitions. We then formalize

the notion of confounding dynamics, presenting a simple example that shows the mechanism at work.

C.8 Frequency Domain and Confounding Dynamics We conclude this primer with a general discussion of

how the results presented above are useful in the analysis of equilibria with incomplete information, and how they

greatly facilitate the study of equilibria with confounding dynamics. Throughout the paper, we work in the space of

polynomials in the lag operator L with square-summable coefficients that operate on Gaussian random variables. In

our framework, any stochastic process ωt can always be written as

ωt = Q(L)εt =

∞∑
j=0

QjL
jεt, (C.28)

where
∑∞
j=0 |Qj |

2 < ∞, and εt ∼ N (0, σε), are innovations identically and independently distributed over time. In

linear-Gaussian environments, working with representations of the form of (C.28), and their functional equivalents,

27Our methodology can also handle unit roots. For example, suppose θt = (1 − L)A(L)εt. The solution, Q(L)εt,
would then inherit the unit root via the cross-equation restriction.

28As discussed by Whiteman (1983), the problem remains even if ζ = ζ̃.
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has three advantages for analyzing rational expectations models with incomplete information.29

First, representation (C.28) is general in the sense that it can accommodate both autoregressive (AR) and

moving-average (MA) components of any order. This is especially useful when searching for an equilibrium because

it avoids the need to specify a conjecture with a specific ARMA order. Regardless of the complexity of the equilibrium

conditions that emerge in models of dispersed information (e.g., infinite regress in expectations), the solution will

take the form of (C.28).30

Second, the Wold Representation Theorem ensures that processes like ωt can always be written uniquely as a

linear combination of a moving average representation where the innovations are the linear forecast errors for ωt,

conditional on any linear-Gaussian information set [Brockwell and Davis (1987)]. That is, the Wold representation

establishes the invertibility of Q(L) and one may write Q(L)−1ωt = εt, which implies that the space spanned by

{ωt, ωt−1, ...} is equivalent (in mean-square norm) to the space spanned by {εt, εt−1, ...}. Consequently, one can

apply the optimal prediction formulas derived by Wiener-Kolmogorov [Whittle (1983)] to compute the conditional

expectation of processes like ωt.

Third, the Riesz-Fischer Theorem [see Sargent (1987)] establishes an isometric, isomorphic mapping from the

space of lag polynomials with square-summable coefficients Q(L) to the space of analytic complex-valued functions,

where (C.28) is represented as Q(z), but with z ∈ C. In several key steps of the analysis in this paper we find

it convenient to exploit the properties of such functions, which allows us to derive simple existence and uniqueness

conditions for rational expectations equilibria with incomplete and dispersed information following Whiteman (1983).

In a slight abuse of notation, we employ L and z interchangeably when working in the space of analytic functions.

We now restrict our focus to the formulation of optimal prediction formulas, which is where confounding dynamics

emerge.

Suppose that we would like to formulate the prediction of ωt+j so as to minimize the mean-squared forecast error,

conditional on the observation of the history of a n× 1 vector of variables, st, up to time t. To denote such history,

we use the compact notation, st ≡ {st−j}∞j=0. Let

st = Γ(L)ut, (C.29)

where Γ(L) is an n×m matrix with each element being a square-summable lag polynomial in non-negative powers of

L, and ut an m×1 vector of i.i.d. Gaussian shocks with variance-covariance normalized to the m×m identity matrix.

Let gss(z) be the variance-covariance generating function for the process st,
31 then one has that gss(z) = Γ(z)Γ(z−1)>.

Similarly, one can define the covariance generating function between the joint processes ωt and st, which is given by

gωs(z) = Q(z)σεΓ(z−1)>. The prediction for ωt+j that minimizes the mean squared forecast error corresponds to a

linear combination of current and past realizations of st, denoted by

P(ωt+j |st) = Π(L)st. (C.30)

Here, Π(L) is a 1×n vector of square-summable lag polynomials in non-negative powers of L, whose form is provided

by the Wiener-Kolmogorov formula

Π(L) =
[
L−jgωs(L)

(
Γ∗(L−1)>

)−1]
+

Γ∗(L)−1. (C.31)

Expression (C.31) has several moving parts that require some unpacking. Let us first consider the special case st = ωt,

which implies Γ(L) = Q(L) and ut = εt, so that the prediction problem is one in which we would like to predict the

future realizations ωt+j , for j ≥ 1, using its own past, ωt. Given the form of ωt in (C.28), the best prediction is one

29We are not the first to highlight these advantages [see, Hansen and Sargent (1980), Futia (1981), Townsend
(1983b), Kasa (2000)].

30Townsend (1983a) elaborates extensively on the advantages of using representations such as (C.28) when solving
for equilibria that harbor an infinite regress in expectations. In Section 3.5 we show the complex form that the infinite
regress in expectations takes in our framework.

31Recall from above that the variance-covariance generating function of a stationary Gaussian process is defined as
the Fourier transform of its correlogram, which is the collection of covariances at all horizons.
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that carries Q(L), j periods forward and uses the best estimates of the infinite history of innovations {εt+j , εt+j−1, ...},
to compute ωt+j . The best estimates of {εt+j , εt+j−1, ..., εt+1} are clearly equal to the unconditional average, 0. It

follows that they should not appear in the optimal prediction. This is achieved by the operator [ ]+ in (C.31), known

as the “annihilating operator”, which instructs us to ignore the first j coefficients of its argument.

The best estimates for {εt, εt−1, εt−2, ...}, on the other hand, are usually not zero, and correspond to the in-

novations in the Wold fundamental representation for ωt. The decomposition of the information set into its Wold

fundamental representation is achieved by Γ∗(L) in (C.31). Whether Γ∗(L) is equal to Γ(L) depends on the invert-

ibility properties of the analytic function Γ(z). For our special case, if Q(z) is invertible for z inside the unit circle,

then the Wold fundamental representation corresponds exactly with the history {εt, εt−1, εt−2, ...}, and the prediction

formula P(ωt+j |ωt) = Π̃(L)ωt, has

Π̃(L) = [L−jQ(L)]+Q(L)−1. (C.32)

Note that all the steps just described are clearly at work here: L−j carries the function Q(L) j periods forward; the

operator [ ]+ sets the estimates of innovations from t + 1 to t + j to zero, by annihilating Q0, Q1,...,Qj−1; finally,

Q(L)−1 makes sure that once Π(L) is multiplied by ωt, the Wold fundamental innovations {εt, εt−1, εt−2, ...} result.

Expression (C.32) is a special case of (C.31) because, in general, Γ(z) is not invertible for z inside the unit circle,

and solving for Γ∗(z) is at the core of the solution to the prediction problem. Formally, Γ∗(z) corresponds to the

“canonical” factorization of the variance-covariance generating function gss(z), so that

gss(z) = Γ∗(z)Γ∗(z−1)>. (C.33)

The canonical factorization answers the question: What space is spanned by the observables st? If Γ(z) is invertible

in non-negative powers of z, then st will span the innovations ut. If Γ(z) is non-invertible, then Γ∗(z) must be

determined and it will span a space that is strictly smaller than that spanned by ut. The existence of Γ∗(z) is

guaranteed by the Wold (fundamental) Representation Theorem. The computation of Γ∗(z) can be quite involved,

however, and there exist several methods for achieving it. In our setting, we follow the steps outlined in Rozanov

(1967).32

The most straightforward reason for Γ(z) to be non-invertible for prediction purposes, is when m > n. In such

case, the dimension of the vector of underlying shocks, ut, is greater than the vector of signals, st, at any t. This

source of non-invertibility is what is typically assumed in the incomplete information literature. A different, and often

more subtle reason, is when the elements in Γ(z) combine in a way to create an “internal” source of non-invertibility.

While the analysis of Section 2 formally illustrates this claim, the easiest way to see this is to consider the case of

m = n, so that Γ(z) is a square matrix. Γ(z) is non-invertible for prediction purposes if its determinant vanishes

at one or more points inside the unit circle. In this case, despite having the same number of shocks and signals,

non-invertibility stems from the way signals combine over time and become themselves a source of noise.

We are interested in this internal source of non-invertibility, which we term “Confounding Dynamics”. Confound-

ing dynamics naturally arise also when m > n, in which case they compound with the first source of non-invertibility,

but their characterization can be substantially more involved. Because our focus is on showing that confounding

32Whittle (1983) shows that the computation of Γ∗(L) is the dual to the solution of the nth order Ricatti equation
in the Kalman filter approach to optimal linear-quadratic prediction. In both cases the objective is to figure out
the variance-covariance of the optimal prediction errors. Hence, if the Ricatti equation is solved, then Γ∗(z) can be
determined; and if Γ∗(L) is computed, then a solution to the Ricatti equation can be determined. In this paper we
take the latter approach, while other authors, most notably Huo and Takayama (2016), take the former. Whether it is
easier to solve the Ricatti equation or to obtain the canonical factorization often depends on the application at hand,
and whether one is looking for an analytical or a numerical solution. The canonical factorization, however, has a wider
scope of applicability. Whittle (1983) presents a generalized approach – which he terms the Hamiltonian approach –
where the prediction problem is solved by the canonical factorization of a matrix function obtained by augmenting the
plant and observation equations of a Kalman system with the saddle point conditions of an Hamiltonian optimization
problem. Huertgen, Hoffmann, Rondina, and Walker (2016) make an explicit connection between these solution
methodologies.
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dynamics can endogenously emerge in equilibrium, in the paper we focus mostly on the m = n case. In Appendix

B.8 we analyze an example where the two sources of non-invertibility are simultaneously present, while we provide a

more formal treatment of the m > n case in Appendix B.3. The following definition formalizes the above discussion.
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