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Abstract

We derive an equivalence, in the aggregate, between dynamic models with dispersed and hierar-

chical information. Optimal signal extraction, in the dispersed case, suggests agents treat the signal

as true with probability equal to the signal-to-noise ratio, and false with the complementary proba-

bility. Equivalence follows when the share of informed agents, in the hierarchical model, is set equal

to the signal-to-noise ratio in the dispersed economy. The value of this theorem is due to the hi-

erarchical model being easier to solve and interpret, especially when agents infer information from

endogenous sources. We use our results to study the behavior of higher-order beliefs and information

transmission in closed form in models with dispersed information and endogenous signal extraction.

While we work within a generic environment, we show how our results can map into a well-known

asset pricing model.
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1 INTRODUCTION

Several foundational papers in economics1 emphasize the importance of informational frictions similar

to the following problem: Consider the dynamic signal extraction problem of inferring a signal (εt ) with

superimposed noise (ηt ) corrupting the signal. One observes the linear combination

St = εt +ηt (1)

and forms the conditional expectation, E(εt |S t ), where S
t ≡St ,St−1, .... Assuming the signal and noise

are drawn from mean-zero Gaussian distributions and are independent across time and uncorrelated at

all leads and lags, then optimal signal extraction is well known with conditional expectation E(εt |S t ) =
τSt , where τ = σ2

ε/(σ2
ε +σ2

η) is the relative weight given to the observed variable. An interpretation of

this equation is that the agent employs a mixed strategy when forming expectations. She believes the

observed variable is the true signal with probability given by the ratio of the variance of the signal to the

signal plus noise variance, σ2
ε/(σ2

ε +σ2
η). Alternatively, the agent believes the observed variable is pure

noise in proportion 1−τ; that is, E(ηt |S t ) = (1−τ)St = σ2
η/(σ2

ε +σ2
η). Thus the agent’s behavior can be

decomposed into disjointed actions: with probability τ, the agent acts as perfectly informed and with

probability 1−τ, the agent acts as perfectly uninformed. The clean delineation is due to the standard

assumption that noise and signal are uncorrelated.

In many dynamic models with dispersed information, the source of the heterogeneity is generated by

a continuum of agents in which each agent i ∈ (0,1) observes some form of a noisy signal, Si ,t = εt +ηi ,t ,

where the noise is uncorrelated with the signal and the variance of the noise is identical across agents. In

linear environments, endogenous variables are linear combinations of underlying shocks, which serves

to operationalize an interpretation consistent with the disjointed behavior of optimal signal extraction

described in the previous paragraph. The purpose of this paper is to show that models with dispersed

information (i.e., models with a continuum of heterogeneous agents that are equally uninformed) can be

mapped into models with hierarchical information structures (i.e., models were agents can be explicitly

ranked according to the amount of information they possess). We refer to this result as the Dispersed-

Hierarchical Equivalence. To the best of our knowledge, this paper is the first to prove such a connec-

tion.

Theorem 1 provides the equivalence, which holds in the aggregate, between models with dispersed

information and models with hierarchical information. In the dispersed environment, there is a contin-

uum of agents with each receiving an idiosyncratic noisy signal about the underlying state, coupled with

information gleaned from endogenous sources. In the hierarchical setup, there are two types of agents:

perfectly informed and uninformed. The uninformed agents can only perform endogenous signal ex-

traction and remain uninformed in equilibrium. Theorem 1 shows that the aggregate representations

of these equilibria can be equated once the parameter measuring the proportion of agents perfectly in-

formed in the hierarchical model is reinterpreted as the signal-to-noise ratio of the privately observed

1For example, see Muth (1960) on rational expectations; Lucas (1972) on monetary theory; Kydland and Prescott (1982) on

business cycle analysis.
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signal in the dispersed information economy. While individual forecasts maintain a well defined cross-

sectional distribution of beliefs in the dispersed economy (Proposition 3), the idiosyncratic noise com-

ponent does not survive aggregation, which delivers our aggregate equivalence.

Section 3 studies the implications of our equivalence result. Given that information can be ordered in

models with hierarchical information, sufficient statistics are available and equilibria relatively straight-

forward to compute. Conversely, with dispersed information, there is no sense in which the state can be

summarized compactly from the viewpoint of each individual agent. Thus, there is a mapping between

the equilibria that can be exploited to better understand aggregate dynamics in dispersed-information

economies. Equipped with an analytical characterization of the market equilibria under dispersed in-

formation due to Theorem 1, we are able to characterize the higher-order belief (HoBs) representation

of such equilibria in closed form and study the role of HoB thinking in the transmission of information.

From the viewpoint of an arbitrary agent i , the optimality of signal extraction behooves her to act as in-

formed with probability equal to the signal-to-noise ratio. In so doing, she will recognize that a fraction

of agents is contemporaneously acting as uninformed. It follows that as an informed agent, she should

forecast the forecast error of the agents acting as uninformed and embed it into her expectations about

the future. She will adjust her time-t forecast according to the collective ignorance of the uninformed

agents, despite the fact that she is contributing to this collective ignorance. She correctly views her indi-

vidual forecast error as infinitesimal in this regard and thus irrelevant for her reasoning.

We also use our closed-form solutions to study information transmission by calculating the infor-

mativeness of the exogenous signal just necessary to perfectly reveal the underlying state (an alternative

interpretation, due to Theorem 1, is the exact fraction of informed agents necessary for perfect revela-

tion of the underlying state). We show how to solve for this statistic as a function of model parameters,

and then examine how this statistic changes with respect to model characteristics (Corollary 3). An in-

crease in the discount factor or in the autocorrelation of the exogenous shock substantially facilitates

information transmission. Because agents are learning endogenously from the forecast errors of other

agent types, an increase in the persistence of these errors improves learning. Increasing the discount

factor and autocorrelation parameter promotes this persistence in errors.

To understand the extent to which higher-order beliefs (HoBs) play a role in information dissemina-

tion, we sequentially remove HoBs from the model and calculate our statistic of information transmis-

sion. We first remove HoBs of order one only (i.e, informed agents time-t expectation of the uninformed’s

t +1 forecast error) and calculate the share of informed agents necessary to fully reveal the underlying

state. We then do this for the informed agents time-t expectation of the uninformed’s t + 1 and t + 2

forecast error and calculate the share of informed agents necessary to fully reveal the underlying state.

We repeat this process, removing all higher-order belief dynamics sequentially. The share of informed

agents that can exist in the model before perfect revelation occurs roughly doubles as all HoBs are re-

moved. This suggests that higher-order beliefs play a crucial role in information transmission.

The final section of the paper shows how our results can be mapped into a well-known asset pricing

framework. Traders with constant absolute risk aversion utility observe two types of Gaussian shocks—

shocks that are common knowledge and those observed with idiosyncratic noise. The idiosyncratic noise

2
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can be interpreted as traders living on Lucas Islands (Lucas (1972)) with incomplete information sharing.

We demonstrate how our results can shed light on asset pricing anomalies.

Contacts with Literature. To the best of our knowledge, there is no result equivalent to Theorem 1 de-

spite the fact that signal extraction problems have played a foundational role in many literatures. Muth

(1960) lays the groundwork for rational expectations and provides a formula for solving a signal extrac-

tion problem where a permanent and transitory shock cannot be disentangled. Kydland and Prescott

(1982) contains a similar signal extraction problem embedded into a business cycle framework. The

inability to disentangle permanent from transitory shocks in Friedman’s (1957) life cycle permanent in-

come theory leads to the information aggregation bias of Goodfriend (1992) and Pischke (1995). Lucas

(1972), Mills (1982) and Wallace (1992) build monetary frameworks with signal extraction as the linch-

pin. More recently, connections have been made between the typical signal extraction problem and

other informational frictions, like rational inattention (Luo and Young (2014)); and the apparent trade-

off between signal processing and discounting (Gabaix and Laibson (2022)).

Theorem 1 is likely operational in many dynamic models. Several recent papers study similar forms

of dispersed information in dynamic macro or asset pricing models. In addition to the papers listed

above, a non-exhaustive list includes, Hellwig and Venkateswaran (2009), Lorenzoni (2009), Mackowiak

and Wiederholt (2009), Angeletos and La’O (2009), Angeletos and La’O (2013), and Huo and Pedroni

(2023). Angeletos and Lian (2016) provides an excellent review of incomplete information in macro mod-

eling. Our theorem therefore presents a class of rational expectations equilibria that could potentially

emerge in such models, but have yet to be characterized. The theorem also provides useful decompo-

sitions that facilitate interpretation. Albeit speculative, we believe there many economic frameworks

in which our theorem could be operational and potentially helpful. We provide a mapping into a well-

known asset pricing model in Section 3.3.

Our approach to solving rational expectations models with dispersed information relies on finding

fundamental moving average (FMAs) representations, applying the Wiener-Kolmogorov optimal predic-

tion formula, and solving for a rational expectations equilibrium via analytic functions. Hansen and Sar-

gent (1980) and Townsend (1983a) were early advocates of deriving FMAs as a way of finding the agents’

innovations representation. Like our paper, Taub (1989), Kasa (2000), Walker (2007), Rondina (2009),

Acharya (2013), Kasa et al. (2014), Rondina and Walker (2021), Mao et al. (2021), Huo and Takayama

(2022), Jurado (2023), Han et al. (2023) and Chahrour and Jurado (2023) employ frequency domain tech-

niques to solve for a rational expectations equilibrium with some form of information friction. Our solu-

tion procedures rely on analytic function theory first introduced by Whiteman (1983).2 Futia (1981) was

perhaps the earliest adopter of such methods in models with heterogeneous agents. While we argue our

approach is the most straightforward path to an analytic solution, the methodology is not crucial for the

result.

Equivalence results have been employed in the incomplete information literature to great effect. For

example, needing to find a way to compact a potentially infinite dimensional state space, Sargent (1991)

2Readers unfamiliar with these techniques can consult Appendix B where we solve representative agent versions of the

models and discuss the solution procedure in more detail.

3



RONDINA & WALKER: EQUIVALENCE

first recognized that low-order ARMA processes could mimic infinite-dimensional moving average rep-

resentations. Kasa (2000) and Chahrour and Jurado (2023) pushed this interpretation further by showing

the ease with which these calculations can be done using complex analysis. More recently, Huo and Pe-

droni (2020) and Angeletos and Huo (2021) are two excellent examples of how equivalence results can

aid in computation, interpretation, and evaluation of equilibria with information distortions.

2 A HIERARCHICAL-DISPERSED EQUIVALENCE

We first introduce a model with hierarchical information in which there are two agent types—informed

and uninformed. Uninformed agents can learn through endogenous variables, which makes the equi-

librium non-trivial. We then solve for an economy with a continuum of agents who each observe an

idiosyncratic signal about the true underlying state of the economy. We derive our equivalence, in the

aggregate, by setting the signal-to-noise ratio in the dispersed economy equal to the share of informed

agents in the hierarchical economy. The usefulness of our result is analyzed in the following section,

where we study objects (e.g., higher-order beliefs) that are tractable in the hierarchical environment and

can be mapped directly into dispersed-informational settings. Before turning to these results, we estab-

lish the full and incomplete information homogeneous beliefs equilibria that serve as limiting cases in

our

2.1 HIERARCHICAL INFORMATION There are two distinct groups of agents; the first group, in propor-

tion µ, observes the underlying shocks directly, ΩI = {εt− j }∞
j=0

. This group is fully informed (I ) and does

not solve a signal extraction problem. The second group, in proportion 1−µ, only observes the sequence

of the endogenous variable, ΩU
t = {yt− j }∞

j=0
and are uninformed (U ). The corresponding model to be

solved is given by

yt =βµEI
(

yt+1|{εt− j }∞j=0

)
+β(1−µ)EU

(
yt+1|{yt− j }∞j=0

)
+xt (2)

xt = A(L)εt (3)

where xt = A(L)εt = A0εt + A1εt−1 +·· · , L is a lag operator Lxt ≡ xt−1, and the coefficients satisfy square

summability,
∑

j A2
j
<∞. Representation (3) places no restrictions on the serial correlation properties of

xt . The Wold Decomposition Theorem allows for such a general representation.

We need to ensure that the endogenous variable, yt , does not fully reveal the underlying shocks to

the uninformed agents in equilibrium. One manner to impose that the equilibrium exists in a subspace

of εt is to assume the endogenous variable is given by3

yt = (L−λ)Ỹ (L)εt |λ| ∈ (−1,1) (4)

3This particular type of signal extraction problem was first encountered in a rational expectations setting in the seminal

work of Townsend (1983b) and is motivated further in Rondina and Walker (2021). The appendix of Rondina and Walker (2021)

discusses the extension of including multiple parameters inside the unit circle, yt = (L−λ1)(L−λ2)Ỹ (L)εt , and makes the case

that this alternative specification would not alter any results contained herein.

4
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If |λ| ∈ (−1,1), then agents only observing the sequence {yt− j }∞
j=0

will not be able to infer the underlying

shocks, {εt− j }∞
j=0

and the variance of their forecast errors will be larger relative to the agents who observe

the underlying shocks, {εt− j }∞
j=0

. Using the terminology of Rozanov (1967), the yt process is not funda-

mental for the εt sequence, and thus the information set generated by observing the yt ’s is a strict subset

of that generated by the εt ’s.

To understand this endogenous signal extraction problem, first consider a similar exogenous signal

extraction problem

st = (L−ϑ)εt =−ϑεt +εt−1, (5)

where εt is a mean-zero, normally distributed variable with variable σ2
ε and ϑ ∈ (0,1). Rondina and

Walker (2021) show the mean-squared error minimizing prediction for εt conditional on observing cur-

rent and past s is

E

(
εt |{st− j }∞j=0

)
=ϑ2εt︸︷︷︸ − (1−ϑ2)[ϑεt−1 +ϑ2εt−2 +ϑ3εt−3 +·· · ]︸ ︷︷ ︸. (6)

information + noise from confounding dynamics

Expression (6) suggests that the process (5) is informationally equivalent to a noisy signal about εt , where

the noise is the linear combination of past shocks, and the signal-to-noise ratio is measured by ϑ2. A

ϑ closer to zero results in less information and more noise but, at the same time, it also makes past

shocks less persistent. As ϑ → 0, there is no information in st about εt and the optimal prediction is

0, the unconditional average. As long as |ϑ| ∈ (−1,1), the value of εt will never be learned and in this

sense, the history of the fundamental shock acts as a noise shock. The shocks are perfectly correlated

and no super-imposed noise process is necessary to keep full revelation of information from occurring.

An infinite history of past shocks is not sufficient because the dynamic history of the shock confounds

agents into making forecast errors that would be persistent under the standard full-information rational

expectations case. Because of this, Rondina and Walker (2021) refer to this type of noise as displaying

confounding dynamics.

Moreover, signal extraction problems (signal plus noise) can be calibrated to contain the same infor-

mation as a stochastic process with confounding dynamics. Specifically, suppose that agents observe an

infinite history of the signal

St = εt +ηt , (7)

where ηt
i i d∼ N

(
0,σ2

η

)
. The optimal expectation is given by E(εt |S t ) = τSt , where τ is the relative weight

given to the signal, τ = σ2
ε/(σ2

ε +σ2
η). Appendix A proves the following equivalence between the two

signal extraction problems, where equivalence is defined as equality of variance of the forecast error

conditioned on the infinite history of the observed signal,

E

[(
εt −E

(
εt |st

))2
]
= E

[(
εt −E

(
εt |S t

))2
]

(8)

5
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when

ϑ2 = τ=
σ2
ε

σ2
ε+σ2

η

(9)

Notice that when the signal-to-noise ratio increases (decreases), this corresponds to a higher (lower)

absolute value of ϑ. In the limit, as σ2
η → 0, then ϑ2 → 1 ensures exact recovery of the state in both cases.

Thus, we could have an environment with more shocks than signals to preserve incomplete information

in equilibrium or we can impose a non-fundamental process such as (4).

Returning to our endogenous signal extraction problem, we must first find the corresponding inno-

vations associated with observing current and past yt ; thus, we must flip the λ root from inside the unit

circle to outside the unit circle without changing the moments of the yt process. This transformation is

accomplished through the use of Blaschke factors, Bλ(L) ≡ (L−λ)/(1−λL)

yt = (L−λ)Ỹ (L)εt = (1−λL)Ỹ (L)et (10)

et =
(

L−λ

1−λL

)
εt = (L−λ)(εt +λεt−1 +λ2εt−1 +·· · ) (11)

Note that we are operating in well-defined Hilbert spaces with the covariance generating function serving

as the modulus and that Blaschke factors have a modulus of one, Bλ(z)Bλ(z−1) = 1, supporting the

equality in (10). Note also that conditional expectations differ in the et and εt spaces.

The guess of the equilibrium process (10) must be verified, and uniquely so. In order to prove that an

equilibrium of the form (4) exists, we need to derive a restriction on the exogenous process (xt ). Merely

assuming that the exogenous process is not invertible is insufficient. In a heterogeneous agent setup, the

informed agents will impound information into the sequence of endogenous variables and uninformed

agents will engage in endogenous signal extraction. We allow the less informed agents to learn through

observations of the endogenous variable, and therefore need to prove that the equilibrium process will

not reveal the underlying shocks perfectly. The following proposition derives a necessary restriction

to keep the uninformed from learning the fundamental shocks and characterizes the unique rational

expectations equilibrium.

Proposition 1. Consider the economy described by (2)—(4). If β ∈ (0,1) and there exists a |λ| ∈ (−1,1) such

that

A(λ)−
µβA(β)

µλ+ (1−µ)
(
β−λ

1−λβ

) = 0 (12)

then the unique rational expectations equilibrium is given by

yt =
1

L−β

{
L A(L)−βA(β)

(
µλ+ (1−µ)Bλ(L)

µλ+ (1−µ)Bλ(β)

)}
εt (13)

with Bλ(L) ≡ L−λ
1−λL

and Bλ(β) ≡ β−λ
1−λβ .

Proof. See Appendix A.

6
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The intuition behind Proposition 1 is as follows: The initial guess of yt = (L −λ)Y (L)εt with |λ| < 1

implies uninformed agents, through knowledge of the endogenous variable alone, will be able to infer

the linear combination of current and past et = Bλ(L)εt . In order for this informational assumption to

survive in equilibrium, it must be the case that knowledge of the model does not provide any additional

information. More precisely, through knowledge of the structural model (2), uniformed agents are able to

subtract off their expectation (EU ) from the equilibrium. What remains is the expectation of the informed

(EI ) and the exogenous process, xt . That is,

yt −β(1−µ)EU (yt+1) =βµEI (yt+1)+xt

=βµL−1
[

(L−λ)Y (L)−
λA(β)

h(β)

]
εt + A(L)εt (14)

where the last equality follows from the proof of Proposition 1 in Appendix A. Equation (14) provides

the exact linear combination of structural shocks that the uninformed agents are able to glean from

performing endogenous signal extraction. The information provided by (14) must be equivalent to et

in order for equilibrium to be consistent with rational expectations. This will be true if and only if (14)

vanishes at L =λ. Condition (12) ensures that this is the case.

The equilibrium representation of Proposition 1 is algebraically the cleanest because it makes clear

that as the share of informed agents goes to zero, µ → 0, the economy converges to the homogeneous

beliefs, incomplete information equilibrium. Conversely, as the share of informed agents approaches

one, µ→ 1, the equilibrium converges to the full information equilibrium. We state this as a corollary.

Corollary 1. Consider the economy described by (2)–(3). For µ = 0, if the exogenous process satisfies the

restriction

A(λ) = 0 (15)

with |λ| ∈ (−1,1), then the unique rational expectations equilibrium is given by

yt =
(

L(1−λL)Ã(L)−β(1−λβ)Ã(β)

L−β

)
et (16)

et =
(

L−λ

1−λL

)
εt

If µ= 1 or |λ| > (−1,1), then the rational expectations equilibrium is unique and given by

yt =
(

L A(L)−βA(β)

L−β

)
εt (17)

The full-information equilibrium (17) is the ubiquitous Hansen-Sargent formula [Hansen and Sar-

gent (1980)]. This equation displays the cross-equation restrictions known as the “hallmark” of rational

expectations models, but there is also an informational interpretation to the H-S formula that we take

advantage of throughout the paper. The first component, L A(L)/(L −β), is the perfect foresight equi-

librium; that is, assuming a representative agent, solve the model (2) forward, recursively substituting,

7
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imposing the law of iterated expectations and applying a no-bubble condition to arrive at

yt = Et

∞∑

j=0

β j xt+ j = Et

(
L A(L)

L−β

)
εt (18)

If we appended the agent’s information set with future values of εt , such that agents have perfect fore-

sight (PF) Ω
PF
t = {εt− j }∞

j=−∞, (18) (after removing the expectation operator) would be the rational ex-

pectations equilibrium. Therefore the last element of the H-S formula, βA(β)/(L −β), represents the

conditioning down associated with only observing current and past εt ’s. Subtracting off this precise lin-

ear combination of future shocks, βA(β)
∑

j β
jεt+ j , stems from knowledge that the model is given by (18)

and the information set of ΩI
t = {εt− j }∞

j=0
.4

As opposed to (13), the following corollary shows that there are equivalent representations that have

a more natural economic interpretation.

Corollary 2. The equilibrium described in Proposition 1 has an equivalent representation in e space given

by

yt =
1

L−β

{
(1−λL)LHU (L)− (1−λβ)βHU (β)

}
et , (19)

where HU (L) = (L−λ)−1{xt −µβ[yt+1−E
I
t (yt+1)]}.

And a representation in ε space given by

yt =
1

L−β

{
LH I (L)−βH I (β)

}
εt (20)

where H I (L) = xt − (1−µ)β[yt+1 −E
U
t (yt+1)]

Proof. Follows directly from Proposition 1.

In models with heterogeneous beliefs, optimal expectations imply that agents must take into consid-

eration the actions of others. The following representation of equilibrium shows how the agents of this

model extract information from other agents’ forecast errors in forming their beliefs of market funda-

mentals. Representations (19) and (20) demonstrates how agents’ beliefs about market fundamentals

are intricately tied to the beliefs of other agents. For the informed (uninformed) agents, the market

fundamental is a combination of the exogenous process, xt , and the forecast error of the uninformed

(informed) agents. Due to these speculative dynamics, agents take into account the forecast error of

the other agent type when formulating their belief for market fundamentals. Using these corollaries,

we derive an analytical form of these higher-order beliefs in Section 3.1. Before doing so, we derive an

equivalence between this economy and a dispersed information setup.

2.2 DISPERSED INFORMATION In this section, we study equilibria in which each agent observes its

own particular “window of the world,” as in Phelps (1969). Agents observe a noisy signal of the innova-

4As shown in Appendix A of Hansen and Sargent (1980), agents who know the model is given by (18) will form expectations

optimally by subtracting off the principal part of the Laurent series expansion of A(L) around β, which is βA(β)/(L −β).

8
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tion which is idiosyncratic across agents. Information is dispersed in the sense that, although complete

knowledge of the fundamentals is not given to any one agent, by pooling the noisy signal of all agents, it

is possible to recover the full information equilibrium.

Specifically, we assume agents (indexed by i ) observe the sequence of current and past endoge-

nous variables {yt− j }∞
j=0

in addition to a sequence of noisy signals, specified as εi t = εt + vi t with vi t ∼
N

(
0,σ2

v

)
for i ∈ [0,1] and Ω

i
t = {yt− j , εi ,t− j }∞

j=0
for i ∈ [0,1]. The model to be solved is

yt =β

∫1

0
E

i [yt+1|Ωi
t ]di +xt (21)

xt = A(L)εt

When the noise is driven to zero, σ2
v → 0, this setup is equivalent to a full information equilibrium.

What is unique about this setup is that each agent formulates a forecast by extracting optimally the

information from a vector of two signals
(

yt ,εi t

)
. The idea of deriving a fundamental representation

developed in the hierarchical case extends naturally to a multivariate setting. The mapping between the

signal and innovations is now a matrix, and the invertibility of that matrix determines the information

content of the signals. The mapping is given by

(
εi t

yt

)
=

[
1 1

(L−λ) Y (L) 0

](
εt

vi t

)
(22)

Given the candidate price function, this matrix is of rank 1 at L =λ and so it cannot be inverted. As shown

in Appendix A and Rondina (2009), the invertible representation is derived through use of a combination

of Blaschke factors and factorization of the signal εi t . The optimal expectation will always be given by

the sum of two terms: a linear combination of current and past innovations εt and a linear combination

of current and past idiosyncratic noise vi t . Appendix A shows that taking the average of the expectations

across agents, the second term will be zero, yielding

Et (yt+1) = [(L−λ)Y (L)+λY0]
(

σ2
ε

σ2
ε+σ2

v

)
εt + [(1−λL)Y (L)−Y0]

(
σ2

v

σ2
ε+σ2

v

)
et (23)

Substituting this expectation into the equilibrium and solving gives the following proposition.

Proposition 2. Consider the economy described by (21). If β ∈ (0,1) and there exists a |λ| ∈ (−1,1) such

that

A(λ)−
τβA(β)

τλ+ (1−τ)
(
β−λ

1−λβ

) = 0 (24)

then the unique rational expectations equilibrium is given by

yt =
1

L−β

{
L A(L)−βA(β)

(
τλ+ (1−τ)Bλ(L)

τλ+ (1−τ)Bλ(β)

)}
εt (25)

9
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with Bλ(L) ≡ L−λ
1−λL , Bλ(β) ≡ β−λ

1−λβ and τ=σ2
ε/(σ2

v +σ2
ε) is the signal-to-noise ratio.

Proof. See Appendix A.

The main result of the section is that the rational expectations equilibrium under dispersed infor-

mation takes the same form as the equilibrium under hierarchical information (13), once the parameter

that governs the share of informed agents µ is appropriately reinterpreted. This analogous representa-

tion allows one to immediately apply the characterizations of the previous section—and the implications

discussed in the next section—to the more realistic dispersed information setup. At the same time, since

no agent is alike in the dispersed information setup, there are aspects of the equilibrium that will not

emerge in the hierarchical case.

Theorem 1 follows immediately.

Theorem 1. Let τ ≡ σ2
ε/(σ2

v +σ2
ε) be the signal-to-noise ratio in the dispersed-information economy and

µ be the share of informed agents in the hierarchical-information economy. The rational expectations

equilibrium of Proposition 2 is equivalent to the rational expectations equilibrium of Proposition 1 when

µ= τ.

The theorem states that in terms of aggregates, the dispersed information setup is identical (i.e.,

same existence condition (12) is equal to (24), and same equilibrium function (13) is equal to (25)) to

the hierarchical information equilibrium when the signal-to-noise ratio τ≡ σ2
ε/(σ2

v +σ2
ε) is equal to the

proportion of informed traders, µ. This equivalence result can be understood by thinking of the strategic

behavior of the dispersedly informed agent. Each agent i receives a privately observed signal εi t and a

publicly observed signal yt about the unobserved fundamental εt . The optimal behavior—in terms of

forecast error minimization—is for the agent to act as if the signal εi t contains no noise and thus is equal

to the true state εt , in measure proportional to the informativeness of the signal τ. At the same time, to

act as if the signal is pure noise and thus it would be optimal to ignore it and act just upon the public

signal yt , this in measure (1−τ) ≡ σ2
v /(σ2

v +σ2
ε). Thus, in a dispersed information setting each agent

behaves optimally by employing a “mixed strategy” approach: act as if they possess the full information

of the informed agents ΩI with probability τ, and act as if they possess just the public information of the

uninformed agents ΩU with probability 1−τ.

While Theorem 1 guarantees equivalence with the hierarchical setup at the aggregate level, impor-

tant differences between the two equilibria at the individual agent level remain. First, the dispersed

information equilibrium displays a well defined cross-sectional distribution of beliefs, as opposed to the

degenerate distribution that would emerge in the hierarchical case. Second, the cross-sectional varia-

tion is perpetual in the sense that the unconditional cross-sectional variance is positive. In other words,

agents’ beliefs are in perpetual disagreement. These two results are stated in the following proposition.

Proposition 3. The cross-section of beliefs of agent i are given by

E
i
t (yt+ j ) = E

I
t

(
yt+ j

)
− (1−τ)Y j−1

1−λ2

1−λL
εt −τY j−1

1−λ2

1−λL
vi t for j = 1,2, .... (26)

10
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The unconditional variance of the difference in beliefs across agents is given by

τ2
(
1−λ2

)
Y 2

j−1σ
2
v for j = 1,2, ... (27)

Proof. See Appendix A.

Under full information, the beliefs would coincide with the expectation E
I
t

(
yt+ j

)
. The difference of

the beliefs of agent i with respect to the full information has two components—one is common across

agents, one is specific to each agent. The common component is analogous to the error associated with

being uninformed and was studied in the previous section, (1−τ)Y j−1((1−λ2)/(1−λL))εt . The second

component is the result of the agent acting as informed but not being able to cleanly distinguish between

εt and vi t . Optimal signal extraction implies that this particular linear combination of idiosyncratic

shocks will infiltrate agent i ’s optimal time-t expectation, while aggregating over all agents eliminates

this term. Thus, the unconditional variance of beliefs will be positive for all j . Proposition 3 offers an

analytical form that can be useful in calibrating key parameters of cross-sectional beliefs.

3 IMPLICATIONS OF THEOREM 1

The significance of Theorem 1 is that it can be operationalized to facilitate interpretation, which stems

from the relative ease with which one can analyze the hierarchical equilibrium and the challenges asso-

ciated when information is dispersed. Calculating objects like higher-order belief dynamics when infor-

mation can be ordered is feasible, but much more challenging when information is equally distributed.

Our interpretation of Theorem 1—that dispersed traders act of as informed with probability equal to the

signal-to-noise ratio and uninformed with the complementary probability—facilitates our analysis.

3.1 HIGHER-ORDER BELIEFS Higher-order beliefs in the hierarchical equilibrium follow most natu-

rally from the equilibrium representations of Corollary 2, which we repeat here for convenience,

yt =
1

L−β

{
(1−λL)LHU (L)− (1−λβ)βHU (β)

}
et ,

where HU (L) = (L−λ)−1{xt −µβ[yt+1 −E
I
t (yt+1)]}. And a representation in ε space given by

yt =
1

L−β

{
LH I (L)−βH I (β)

}
εt

where H I (L) = xt −(1−µ)β[yt+1−E
U
t (yt+1)]. These Hansen-Sargent equations make clear that each agent

type believes that market fundamentals (i.e., the stochastic process to be forecast) consists of the under-

lying exogenous process, xt , and the forecast error of the other agent. Agents are forecasting the forecast

errors of the other agent type. The restriction from Proposition 1, A(λ)−(µβA(β))/(µλ+(1−µ)Bλ(β)) = 0

ensures that uninformed agents cannot learn more from the informed forecast error than the space

spanned by the et process.

In order to derive higher-order beliefs, we iterate the equilibrium equation forward by one period,

11
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yt+1 =βµEI
t+1[yt+2]+β(1−µ)EU

t+1[yt+2]+xt+1, noting that the functional form of the equilibrium is yt =
(L−λ)Y (L)εt ; the appendix shows the time t +1 average expectation of the endogenous variable at t +2

can be written as the actual value at t +2 minus the average market forecast error, namely

µEI
t+1 yt+2+ (1−µ)EU

t+1 yt+2 = yt+2+µY0λεt+2 − (1−µ)Y0Bλ(L)εt+2 (28)

The average market forecast error on the RHS of (28) has two components: the first term represents

the error made by the informed agents, Y0λεt+2, appropriately weighted by the mass of informed agents

in the market, µ; the second term, Y0Bλ(L)εt+2 = Y0et+2, represents the forecast error of the uninformed

agents, weighted by 1−µ. We know from the form of the lag polynomial Bλ(L) that the forecast error

of uninformed agents contains a linear combination of current and past innovations of the informed

agents’ information set, et+2 = (L −λ)(1−λL)εt+2 = (L −λ)(εt+2 +λεt+1 +λ2εt + ·· ·). Therefore, the in-

formed agents’ time-t expectation of the time t +1 average expectation is

E
I
t

(
Et+1 yt+2

)
= E

I
t yt+2− (1−µ)Y0

(
1−λ2

1−λL

)
λεt (29)

Hence, the informed agents will always do better (a smaller forecast error), if they correct their expecta-

tion of the average price according to the forecast errors of the uninformed. Conversely, the uninformed

form HoBs but the law of iterated expectations holds in their case because the forecast errors of the in-

formed, Y0µλεt+2, are not forecastable conditional on the uninformed’s information set at time t , and

so E
U
t (Et+1 yt+2) = E

U
t yt+2.

An immediate consequence of informed agents forming HoBs is that the law of iterated expectations

fails to hold with respect to the average expectations operator,

Et

(
Et+1 yt+2

)
= Et yt+2−µ(1−µ)Y0

(
1−λ2

1−λL

)
λεt (30)

As shown in Appendix A, the structure of HoBs at any order can be analytically characterized as

EtEt+1 · · ·Et+ j yt+ j+1 = Et yt+ j+1− (1−µ)
( j∑

i=1

(µλ)i Y j−i

)( 1−λ2

1−λL

)
εt

This equation shows that higher-order beliefs are a discounted function of structural shocks with dis-

count factor equal to the share of informed agents, µ, and the degree of asymmetric information, as

indexed by λ. We use this equation below to assess the extent to which information is impounded into

the equilibrium price via higher-order belief dynamics.

It is optimal for informed agents to adjust expectations by correcting the forecast errors of the unin-

formed. However, no such informational advantage exists in the dispersed equilibrium. Do agents even

form higher-order beliefs? Can they be characterized in closed form? To address these questions, using

Theorem 1, we can write the time-t expectation of agent i of the equilibrium at t +1 as

Ei t

(
Et+1 yt+2

)
=µEi t

(
E

I
t+1 yt+2

)
+ (1−µ)Ei t

(
E

U
t+1 yt+2

)

12
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From the hierarchical equilibrium, we know that EU
t+1 yt+2 = E

I
t+1 yt+2 −Y0

1−λ2

1−λLεt+1. We also notice that,

because the information set of an arbitrary agent i is strictly smaller than the information set of an in-

formed agent of the hierarchical equilibrium and because the law of iterated expectations holds at the

single agent level, we have Ei tEi t+1E
I
t+1 yt+2 = Ei t yt+2. The law of iterated expectations holding at the

single agent level also implies Ei tEi t+1E
U
t+1 yt+2 = Ei tE

U
t+1 yt+2. Therefore

Ei t

(
Et+1 yt+2

)
=µEi t yt+2 + (1−µ)Ei t yt+2− (1−µ)Y0Ei t

(
1−λ2

1−λL

)
εt+1 (31)

Forming higher-order beliefs and breaking the law of iterated expectations follows if the last term is non-

zero. Appendix A shows

(1−µ)Y0Ei t

(
1−λ2

1−λL
εt+1

)
= Y0(1−µ)

(
λ

(
1−λ2

)

1−λL

)(
σ2
ε

σ2
ε+σ2

v

)
(εt +vi t )

Aggregating over all agents provides an equivalence to the hierarchical average expectation. At face value,

this result seems counterintuitive because all agents are similarly uninformed. Each agent must think

that her information is somehow superior to the information of the other agents in order for the law of

iterated expectations to not be applicable. The intuition behind Theorem 1 provides the answer. Take

any arbitrary agent i . This agent is instructed by the optimality of signal extraction to act as informed

with probability µ. In so doing, she will recognize that a fraction 1−µ of agents is contemporaneously

acting as uninformed. It follows that as an informed agent, agent i should forecast the forecast error of

the agents acting as uninformed and embed it into her expectations about the future. She will adjust her

time-t forecast according to the collective ignorance of the uninformed agents (i.e., agents inferring the

signal as pure noise). This ignorance accumulates at time t +1, t +2, etc. and therefore, (31) generalizes

to higher orders. At the same time, she is acting as uninformed as well and is part of the portion of 1−µ

agents of whom she is forecasting the forecast errors. However, the relevance of her individual forecast

error is infinitesimal in this regard and thus irrelevant for her reasoning as informed.

3.2 INFORMATION TRANSMISSION Endogenous signal extraction plays a crucial role in models with

heterogeneous beliefs but mechanisms of information transmission are typically intractable. Our ana-

lytical solutions permit analysis of information transmission which we exploit by calculating the exact

informativeness of the signal (or, due to Theorem 1, the share of informed agents), needed to completely

reveal the underlying state. That is, we can use the existence criteria of Propositions 1 and 2, specifically

Equation (24), to determine the required τ or µ necessary to completely reveal the underlying shock

sequence, εt . Moreover, we can do so as a function of underlying parameters and as a function of higher-

order beliefs. The change in this statistic with respect to these parameters and higher-order beliefs gives

us an accurate measure of information transmission.

We begin with Figure 1, which characterizes the dispersed information equilibrium of Proposition 2

in the (β,θ) space for the exogenous process, xt = ρxt−1 +εt +θεt−1. (Of course given Theorem 1, this

figure also characterizes equilibrium for the hierarchical formulation of Proposition 1.) The figure is built

13
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ρ = 0

ρ = 0.5

ρ = 0.99

0 1

0

1

β

1/θ

Full Information

Dispersed if τ< τ⋆

Dispersed ∀ τ

Figure 1: (β,θ) Existence Space. Existence of Dispersed and Full-Information Equilibria following Propo-

sition 2 for xt = ρxt−1 + εt +θεt−1. Equilibria to the right of the dashed line preserve heterogeneity in

information if and only if τ< τ⋆.

around the following corollary to Proposition 2.

Corollary 3. Consider the dispersed-information economy described by (21) of Proposition 2 with xt =
ρxt−1 +εt +θεt−1, β,ρ ∈ (0,1) and θ > 0. The equilibrium is characterized in the (β,θ) space according to

the following restrictions:

1. If θ ≤ 1, a dispersed information equilibrium does not exist and the model is characterized by the

full-information equilibrium.

2. If θ> 1, a dispersed information equilibrium exists for any τ> 0 and ρ ≥ 0 if

θ ≥
( 1

1−β(1+ρ)

)
(32)

3. If θ > 1 and (32) is not satisfied, a dispersed information equilibrium exists for signal-to-noise ratio

τ if and only if τ∈ (0,τ⋆) with

τ⋆ =
(θ−1)(1−ρβ)

β(1+ρ)(1+θβ)

Proof. See Appendix A.

Three points are noteworthy. First, as is evident from Figure 1 and statement 1 of Corollary 3, if θ ≤ 1,

the endogenous variable fully reveals the underlying shock, εt , and the equilibrium is consistent with
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the full information equilibrium. With θ ≤ 1, confounding dynamics are not present in the exogenous

process and xt is fundamental for εt . Second, from statement 3 and Figure 1, for a certain region of

the parameter space (to the right of the dashed lines in Figure 1) a dispersed information equilibrium

exists only if the signal-to-noise ratio is sufficiently small. The dashed lines represent the equilibrium

that prevails as τ → 1, plotted for various serial correlation parameters. To the left of the dashed line,

dispersed information will always be preserved in equilibrium regardless of the informativeness of the

signal. The derivations of Section 2.1 demonstrate that an increase in θ may be interpreted as an increase

in the noise associated with the endogenous signal extraction problem. The information content of the

endogenous variable is sufficiently small that no matter how informative the exogenous signal, the full

information equilibrium cannot be learned. How the discount factor β alters the space of existence is

similar to that of the serial correlation parameter ρ, which is the final point to be made. As the serial

correlation in the xt process increases and β increases, it is more difficult to preserve dispersed informa-

tion, ceteris paribus (the dashed line shifts to the left as ρ increases from 0 to 0.99). An increase in β and

ρ leads to a longer lasting effect of current information. This results in a higher |λ| and a decrease in the

informational discrepancy between fully informed and uninformed agent types.

Full Information

Hierarchical

0 10 20 30 40 50

0.06

0.07

0.08

0.09

0.10

0.11

0.12

µ

µ⋆

All HOBs No HOBs

∞

µ⋆

Figure 2: Existence space for the hierarchical information equilibrium as higher-order beliefs are re-

moved from the expectation of informed agents: xt = 0.8xt−1 +εt +
p

11εt−1, β= 0.985.

Higher-order belief dynamics play a crucial role in disseminating information. As discussed above,

informed agents are correcting for the bias in the uniformed agents’ forecast errors, so there is an impor-

tant feedback mechanism at work. The uninformed agents are able to extract information about their

own forecast errors by observing the endogenous variables due to the formation of HoBs. One conse-

quence of this informational feedback effect is highlighted in Figure 2. This figure shows the existence
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space of the dispersed or hierarchical equilibria of Propositions 1 and 2 as higher-order belief dynamics

are sequentially removed from the expectation of the informed agents. That is, we solve the equilib-

rium imposing that the law of iterated expectations holds at horizon t = 1, and derive the corresponding

existence space given by Corollary 3. We then impose the law of iterated expectations at t = 1,2 and

derive the existence space; impose the law of iterated expectations at horizons t = 1,2,3, and so forth.

The x-axis indicates the horizons of HoBs removed. As HoBs are removed, the dispersed information

equilibrium can support more informed agents or a higher signal-to-noise ratio. This is because the in-

formation that the uninformed are extracting from the endogenous variable is declining as fewer HoBs

are being formulated. When we impose the law of iterated expectations on the entire dynamic structure

(No HoBs or ∞ on the x-axis for Figure 2), the number of informed agents or the informativeness of the

exogenous signal can nearly double (from 0.065 to 0.122) without fully revealing all underlying shocks.

While the structure of the model will dictate the extent to which information can be impounded into

equilibrium variables, endogenous signal extraction and the formation of higher-order beliefs plays an

important role in information transmission.

3.3 AN ASSET PRICING EXAMPLE The purpose of this section is to show how our setup and results

can be implemented in a well-known framework. Suppose there is a riskless asset (e.g., Treasury) that

pays a constant rate of return (1+ r ) in perfect elastic supply, and a risky asset (e.g., stock) with price pt

and fundamentals ( ft ) that are comprised of a linear combination of two stochastic components. The

first component( f I
t ) is observed without noise. For example, the size of next period’s dividend is typi-

cally common knowledge among market participants. The second component of fundamentals ( f U
t ) is

observed with idiosyncratic noise. Our assumption here is that traders are informed about news con-

cerning a particular firm through various media outlets and these outlets do not communicate the news

identically to all traders. One interpretation of this assumption is that traders live on Lucas islands [Lucas

(1972)] with imperfect information sharing. Traders (indexed by i ) observe a sequence of noisy signals

about unobserved fundamentals εi t = εU
t + vi t with vi t ∼ N

(
0,σ2

v

)
. The information set of the traders

is therefore, Ωi
t = {pt− j , f I

t− j
,εi ,t− j }∞

j=0
for i ∈ [0,1]. Fundamentals are given by the convex combination,

ft = φ f I
t + (1−φ) f U

t = φF I (L)εI
t + (1−φ)FU (L)εU

t where φ ∈ (0,1) dictates the type of fundamental, and

the shocks are assumed Gaussian and orthogonal.

Following the standard CARA-Gaussian calculus,5 traders submit a linear demand schedule of the

form (1+ r ) ft +E
i
t pt+1 − (1+ r )pt . On the supply side, we follow the standard assumption in the litera-

ture by introducing liquidity traders that make the number of shares available to the market a random

variable, ut . We assume the stochastic process, ut , is common knowledge and follows an i.i.d. Gaussian

5At time t , the budget constraint of investor i is given by wi ,t+1 = zi ,t (pt+1 + (1+ r ) ft )+ (wi ,t − zi ,t pt )(1+ r ) where wi ,t

denotes the wealth of agent i at t and zi ,t is the number of units of the risky asset held by agent i at t . The investor will choose zi t

so as to maximize a constant absolute risk aversion utility function −E
i
t exp(−γwi ,t+1), where γ is the risk aversion parameter,

and E
i
t denotes the time t conditional expectation of agent i . The linear demand function follows from the first-order optimality

condition and by assuming stationarity in the conditional variance term. We normalize the risk aversion parameter to unity.

While this limits the role of risk aversion, it preserves linearity which allows us to focus on the linear discounted present value

model, and permits closed-form solutions.
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process. The equilibrium is then

pt =β

∫1

0
E

i
t [pt+1|Ωi

t ]di + ft −βut

where β= (1+ r )−1. Defining the average expectation operator as Ē0
t xt+1 =

∫1
0 E[xt+1|Ωi

t ]di , with higher-

order values defined as Ēk
t ft+k+1 = Ēt Ēt+1 · · · Ēt+k ft+k+1, we can write the equilibrium as

pt = Et

∞∑

k=0

βk (φ f I
t+k −βut+k)+ (1−φ)

∞∑

k=0

Ē
k
t β

k f U
t+k (33)

The first summation contains an expectation operator that obeys the law of iterated expectation due

to common information across all traders. Setting φ = 1 and defining ft −βut ≡ jt = J(L)ξt gives the

homogeneous-information equilibrium

pt =
(

LJ(L)

L−β
−
βJ(β)

L−β

)
ξt = p⋆

t −pR
t (34)

For φ ∈ (0,1), the heterogeneous information component of fundamentals, (1−φ) f U
t , becomes opera-

tional. Note that this information structure is consistent with our dispersed information setup of Section

2 and therefore the solution is given by Proposition 2. Moreover, Theorem 1 states that we can employ

any equilibrium representation established under hierarchical information derived in Section 2.1, under

the restriction that the signal-to-noise ratio is set equal to the share of informed agents (µ= τ).

Consider the hierarchical equilibrium representation given by

pU
t =

(
LFU (L)

L−β

)
εU

t −
(
βFU (β)

L−β

)
εU

t −
( κ

1−λL

)
εU

t (35)

where κ= ((1−µ)(1−λ2)βFU (β))/(β−λ−µβ(1−λ2)) isolates the term that distinguishes full information

from heterogeneous information. The last term on the right-hand side of (35) is useful for showing how

variance bound violations can seemingly occur in heterogeneous-information economies (see e.g., Miao

et al. (2021), Kasa et al. (2014)). The intuition comes from writing the price as pt = p⋆

t +pR
t , where p⋆

t

is the perfect foresight price and pR
t is the conditioning down term due to agents not observing future

values of shocks. As first documented in Shiller (1981), a variance inequality can be established from (34)

by noting var(p⋆

t ) = var(pt )+ var(pR
t )+ 2cov(pt , pR

t ) = var(pt )+ var(pR
t ) > var(pt ). With homogeneous

information, the covariance between pR
t and pt is zero. We can write pt = Et p⋆

t , and pR
t represents

the optimal conditioning down from the perfect foresight equilibrium; hence, pt and pR
t will not be

correlated due to the orthogonality of optimal prediction and the inequality is established. To see this

explicitly, we use the fact that xn − yn = (x − y)(xn−1 + xn−2 y + xn−3 y2 + ·· · + x2 yn−3 + x yn−2 + yn−1) to
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write the equilibrium (34) as

pt =
(

L(J0 + J1L+ J2L2 +·· · )−β(J0 + J1β+ J2β
2 +·· · )

L−β

)
ξt

= (J0 + J1(L+β)+ J2(L2 +Lβ+β2)+ J3(L3 +L2β+Lβ2 +β3)+·· · )ξt

=
(
J(β)+L(J(β)− J0 )β−1 +L2(J(β)− J0 − J1)β−2 +·· ·

)
ξt

This representation makes clear that the equilibrium is only a function of current and past shocks, while

the term pR
t is only a function of future shocks, pR

t =
(
βJ(β)
L−β

)
ξt = β j (β)

∑∞
j=0β

jξt+ j+1 and therefore

cov(pR
t , pt )= 0.

Contingent on the econometrician’s information set,6 the heterogeneous-information equilibrium

need not obey the zero-correlation property, i.e., cov(pR
t , pt ) 6= 0. An econometrician who ignores het-

erogeneity will not properly account for the last term on the right-hand side of (35), which is clearly a

function of past shocks κ
∑

j λ
jεU

t− j
. The econometrician will find a non-negative covariance term be-

tween the homogeneous-information equilibrium price, p I
t and the remainder term, pR

t given by

cov(p I
t , pR

t ) =σ2
εU κ

(
FU (β)+ (λ/β)(FU (β)−F0)+ (λ/β)2(FU (β)−F0 −F1)+·· ·

)
6= 0. (36)

As the share of informed (µ) or the signal-to-noise ratio (τ) goes to one or as the equilibrium becomes

fully revealing (λ = 1), κ goes to zero, as does this correlation. However, if there is a meaningful share

of uninformed agents, this non-zero correlation can be substantial and used to overturn representative

agent results on excess volatility and asset price momentum.

4 CONCLUDING COMMENTS

While our results are derived in a univariate framework for transparency, the solution procedures in Ron-

dina and Walker (2021) are a guide to multivariate extensions. The real business cycle model contained

therein pushes the limits of our closed-form expressions but also demonstrates that our propositions

and corollaries are applicable in much larger models. This paper is not one of limiting cases.

Perhaps more importantly, Theorem 1 can be applied broadly to many models, even when analytical

tractability is no longer feasible. As long as the information structure consists of a continuum of agents

that receive idiosyncratic signals on the true underlying state, the intuition of Theorem 1 can be invoked.

Agents will apply the optimal mixed strategy to signal extraction that can be mapped directly into an

informed-uninformed framework.

6The qualifying part of the previous sentence is non-trivial; Kasa et al. (2014) derive the Wold representation of the econo-

metrician for a specific information structure and show how violations of the variance bound are possible.
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A PROOFS

A.1 PROOF OF EQUATIONS (8)–(9) We need to show that the representations (5) and (7) are equivalent in

terms of unconditional forecast error variance

E

[(
εt −E

(
εt |S t

))2
]
= E

[(
εt −E

(
εt |st

))2
]

(37)

when ϑ2 = τ=σ2
ε/(σ2

ε+σ2
η).

The optimal forecast E[εt |S t ] is given by weighting St according to the relative variance of ε, E(εt |S t ) =
( σ2

ε

σ2
ε+σ2

η

)
St and therefore,

E

[(
εt −E

(
εt |S t

))2
]
=

σ2
εσ

2
η

σ2
ε+σ2

η

(38)

Calculating the variance of the one-step-ahead forecast error for st = (L −ϑ)εt requires more careful

treatment. The fundamental representation is derived through the use of Blaschke factors

st = (L−ϑ)

(
1−ϑL

L−ϑ

)(
L−ϑ

1−ϑL

)
εt = (1−ϑL)et (39)

et =
(

L−ϑ

1−ϑL

)
εt (40)

Given that (39) is an invertible representation then the Hilbert space spanned by current and past xt is

equivalent to the space spanned by current and past et . This implies

E(εt |e t ) = E(εt |st ) (41)

To show (41) notice that (40) can be written as

εt =C (L)et =
[

1−ϑL

L−ϑ

]
et =

[
L−1 −ϑ

1−ϑL−1

]
et = (L−1 −ϑ)

∞∑

j=0

ϑ j et+ j (42)

Thus, while (39) does not have an invertible representation in current and past e it does have a valid

expansion in current and future e . Applying the optimal prediction formula,

E(εt |e t ) =
[
C (L)

]
+et =−ϑet =

( −ϑ
1−ϑL

)
st = E(εt |st ) (43)

We must now calculate

E

[(
εt −E

(
εt |st

))2
]
=E

(
ε2

t

)
+E

(
εt |st

)2 −2E
(
εtE

(
εt |st

))
(44)

=σ2
ε+ϑ2σ2

ε−2E(εt

(
εt |st

)
) (45)

where we’ve used the fact that the squared modulo of the Blaschke factor is equal to 1,
(

1+ϑz
z+ϑ

)(
1+ϑz−1

z−1+ϑ
)
= 1,
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and therefore E(e2) = σ2
ε. To calculate E(εt

(
εt |st

)
) we use complex integration and the theory of the

residue calculus,

E(εt et ) =
−ϑσ2

ε

2πi

∮
z −ϑ

1−ϑz

d z

z
=σ2

ε

[
lim
z→0

z −ϑ

1−ϑz

]
=ϑ2σ2

ε (46)

Equations (45) and (46) give the desired result

E

[(
εt −E

(
εt |x t

))2
]
=

(
1−ϑ2

)
σ2
ε (47)

Equating (47) and (38) concludes the proof,

ϑ2 =
σ2
ε

σ2
ε+σ2

η

(48)

A.2 PROOF OF PROPOSITION 1 The conditional expectations for the informed and uninformed are given

by

E
I
t (yt+1) = L−1[(L−λ)Y (L)+λY0]εt

E
U
t (yt+1)= L−1[(L−λ)Y (L)−Y0Bλ(L)]εt

Substituting the expectations into the equilibrium gives the z-transform in εt space as

(z −λ)Y (z) =βµz−1[(z −λ)Y (z)+λY0]+β(1−µ)z−1[(z −λ)Y (z)−Y0Bλ(z)]+ A(z)

and re-arranging yields the following functional equation

(z −λ)(z −β)Y (z) = z A(z)+βY0[µλ− (1−µ)Bλ(z)]

The Y (·) process will not be analytic unless the process vanishes at the poles z = {λ,β}. Evaluating at

z =λ gives the restriction on A(·), A(λ) =−βµY0. Rearranging terms

(z −β)Y (z) =
1

z −λ

{
z A(z)+βY0[µλ− (1−µ)Bλ(z)]

}

=
1

z −λ

{
z A(z)+βY0h(z)

}
(49)

where h(z) ≡ [µλ− (1−µ)Bλ(z)]. Evaluating at z = β gives Y0 = − A(β)
h(β) to ensure stability. This implies

that the restriction on A(·) is

A(λ) =
βµA(β)

h(β)

which is (12). Substituting this into (49) delivers (13).
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A.3 PROOF OF PROPOSITION 2 Similar to solving the previous model, the first step in the proof of

Proposition 2 is to obtain an innovations representation for the signal vector (εi t , yt ) that can be used to

formulate the expectation at the agent’s level. That is, we must find the space spanned by current and

past observables, {εi ,t− j , yt− j }∞
j=0

. This representation in terms of the innovation εt and the noise vi t is

(
εi t

yt

)
=

(
σε σv

(L−λ) Y (L) 0

)(
ε̂t

v̂i t

)
=Γ(L)

(
ε̂t

v̂i t

)
(50)

where we have re-scaled the mapping so that the innovations ε̂t and the noise v̂i t have unit variance. Let

the fundamental representation be denoted by

(
εi t

yt

)
= Γ

∗(L)

(
w 1

i t

w 2
i t

)
(51)

As with the hierarchical case, we must use Blaschke factors to flip the non-fundamental root, λ, to out-

side the unit circle. However, we must also employ a Gram-Schmidit type orthogonalization (Wλ) so

that the Blaschke factor does not introduce additional unstable roots into the dynamic process. This

decomposition is given by

Wλ =
1

√
σ2
ε+σ2

v

(
σε −σv

σv σε

)
, Bλ(L) =

(
1 0

0 1−λL
L−λ

)

Γ
∗(L) = Γ(L)WλBλ(L)

with the vector of fundamental innovations

(
w 1

i t

w 2
i t

)
= Bλ(L−1)W T

λ

(
ε̂t

v̂i t

)

The expectation term for agent i is found by applying the the Wiener-Kolmogorov prediction formula to

the fundamental representation (51)

E(yt+1|εt
i , y t ) =

[
Γ
∗
21(L)−Γ

∗
21(0)

]
L−1w 1

i t +
[
Γ
∗
22(L)−Γ

∗
22(0)

]
L−1w 2

i t . (52)

It is straightforward to show that

Γ
∗
21 (L) = (L−λ) Y (L)

σεp
σ2
ε+σ2

v

, Γ
∗
21 (0) =−λY0

σεp
σ2
ε+σ2

v

Γ
∗
22 (L) =−(1−λL) Y (L)

σvp
σ2
ε+σ2

v

, Γ
∗
22 (0) =−Y0

σvp
σ2
ε+σ2

v

Solving for the equilibrium requires averaging across all the agents. In taking those averages, the id-

iosyncratic components of the innovation (the noise) will be zero and one will have two terms that are
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functions only of the aggregate innovation, namely

∫1

0
w 1

i t di = w 1
t =

σεp
σ2
ε+σ2

v

ε̂t and

∫1

0
w 2

i t di = w 2
t =− σvp

σ2
ε+σ2

v

L−λ

1−λL
ε̂t .

The average market expectation is then

Ē(yt+1) = [(L−λ)Y (L)+λY0]L−1 σ2
ε

σ2
ε+σ2

v
ε̂t + [(1−λL)Y (L)−Y0]L−1 σ2

v

σ2
ε+σ2

v

L−λ

1−λL
ε̂t (53)

Now, if we let

τ≡ σ2
ε

σ2
ε+σ2

v
,

and substitute the functional form of the average expectations into the equilibrium equation for yt , we

would get

(L−λ)Y (L) =βµL−1[(L−λ)Y (L)+λY0]+β(1−µ)L−1
[

(L−λ)Y (L)+Y0
λ−L

1−λL

]
+ A(L)σε

Setting Y (L) =Q(L)σε, we can write the z-transform in εt space of the fixed point condition

(z −λ)Q(z) =βτz−1[(z −λ)Q(z)+λQ0]+β(1−τ)z−1
[

(z −λ)Q(z)+Q0
λ−L

1−λL

]
+ A(z) (54)

Re-arranging yields the following functional equation

(z −λ)(z −β)Q(z) = z A(z)+βQ0

[
τλ+ (1−τ)

λ− z

1−λz

]

The Q(·) process will not be analytic unless the process vanishes at the poles z = {λ,β}. Evaluating at

z =λ gives the restriction on A(·), A(λ) =−βτQ0. Rearranging terms

(z −β)Q(z) =
1

z −λ

[
z A(z)+βQ0

(
τλ+ (1−τ)

λ− z

1−λz

)]

=
1

z −λ

[
z A(z)+βQ0h(z)

]
(55)

where h(z) ≡ τλ+ (1−τ) λ−z
1−λz

. Evaluating at z = β gives Q0 =− A(β)
h(β)

to ensure stability; this also results in

uniqueness. The fixed point for λ can be then written as

A(λ) =
βµA(β)

h(β)

which is (24). Substituting this into (55) delivers (25), which completes the proof.

A.4 PROOF OF PROPOSITION 3 Once the analytic form for Γ∗
21 (L) and Γ

∗
22 (L) are known from Proposi-

tion 2, one can compute E(yt+ j |εt
i
, y t ) for any j = 1,2, .... We show the j = 1 case here. Substitute Γ

∗
21 (L)
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and Γ
∗
22 (L) into (52) and collecting the terms that constitute (53), one gets

E(yt+1|εt
i , y t ) = Ē(yt+1)+

σε

σ2
ε+σ2

v

L−1[(L−λ)Y (L)+λY0 − (L−λ)Y (L)+Y0
L−λ

1−λL
]σv v̂i t

= Ē(yt+1)+
σε

σ2
ε+σ2

v

L−1[λY0 +Y0
L−λ

1−λL
]σv v̂i t

= Ē(yt+1)+µY0
1−λ2

1−λL
vi t , (56)

which completes the proof for the first statement of the theorem for j = 1. The variance of the term

µY0
1−λ2

1−λL vi t can be readily computed since the innovations vi t are independently distributed with vari-

ance σ2
v .

A.5 HOBS WITH HIERARCHICAL INFORMATION Write the equilibrium as yt = (L−λ)Y (L)εt where |λ| < 1

and Y (L) satisfies Proposition 1. For j = 1, the time t +1 average expectation at t +2 is given by

Et+1 yt+2 =µEI
t+1 yt+2 + (1−µ)EU

t+1 yt+2

= L−1(L−λ)Y (L)εt+1 +L−1Y0[µλ− (1−µ)Bλ(L)]εt+1

= yt+2 +L−1Y0[µλ− (1−µ)Bλ(L)]εt+1 (57)

The informed agent’s time t expectation of the average expectation at t +1 is

E
I
tEt+1 yt+2 = E

I
t yt+2 +µλY0E

I
t εt+2 −Y0(1−µ)EI

t Bλ(L)εt+2. (58)

Clearly E
I
t εt+2 = 0, whereas the expectation in the last term of (58) is given by

E
I
t Bλ(L)εt+2 = L−2{Bλ(L)−Bλ(0)−Bλ(1)L}εt (59)

where the notation Bλ( j ) stands for “the sum of the coefficients of L j ”. If we write

Bλ(L) = (L−λ)(1+λL+λ2L2 +λ3L3 +·· · ).

it is straightforward to show that Bλ(0) =−λ and Bλ(1) = (1−λ)(1+λ) = (1−λ2), from which follows

Bλ(L)−Bλ(0)−Bλ(1)L =
L−λ

1−λL
+λ− (1−λ2)L =

λ(1−λ2)L2

1−λL
.

Putting things together, the informed agent’s expectation of the average expectation is

E
I
tEt+1 yt+2 = E

I
t yt+2 − (1−µ)Y0λ

( 1−λ2

1−λL

)
εt (60)

For the uninformed,

E
U
t Et+1 yt+2 = E

U
t yt+2 +Y0µλE

U
t εt+2 −Y0(1−µ)EU

t Bλ(L)εt+2
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As for the informed case, EU
t εt+2 = 0; however, the second term now is EU

t Bλ(L)εt+2 = 0 because, by def-

inition, Bλ(L)εt+2 is not in the information set of the uninformed agents at time t . Hence E
U
t Et+1 yt+2 =

E
U
t yt+2: the uninformed are not forming higher-order expectations.

Applying the above results to the market forecast of the market forecast one gets

EtEt+1 yt+2 =µEI
tEt+1 yt+2+ (1−µ)EU

t Et+1 yt+2 = Et yt+2 −µ(1−µ)Y0λ
( 1−λ2

1−λL

)
εt , (61)

which shows that the market forecast operator does not satisfy the law of iterated mathematical expec-

tations. We can now characterize the entire structure of the market HOB. For j = 2, we need to calculate

EtEt+1Et+2 yt+3. From (57),

Et+2 yt+3 = yt+3 +Y0[µλ− (1−µ)Bλ(L)]εt+3

We then need the uninformed and informed’s time t +1 expectations of Et+2 yt+3. For the uninformed

we know from above (taking the time one period forward) that EU
t+1Et+2 yt+3 = E

U
t+1 yt+3. From standard

conditioning down one has

E
U
t+1 yt+3 =

[(1−λL)Y (L)

L2

]
+Bλ(L)εt+1

= L−2[(L−λ)Y (L)− (Y0 + (Y1 −λY0)L)Bλ(L)]εt+1 (62)

For the informed

E
I
t+1Et+2 yt+3 = E

I
t+1 yt+3+µY0λE

I
t+1εt+3 − (1−µ)Y0E

I
t+1Bλ(L)εt+3

= L−2[(L−λ)Y (L)+λY0 − (Y0 −λY1)L]εt+1 − (1−µ)Y0λ
( 1−λ2

1−λL

)
εt+1. (63)

Combining (62) and (63) gives

Et+1Et+2 yt+3 = yt+3 +µ{λY0 − (Y0 −λY1)L}εt+3 −µ(1−µ)Y0λ
( 1−λ2

1−λL

)
εt+1

−(1−µ)[Y0 + (Y1 −λY0)L]Bλ(L)εt+3 (64)

Following the same argument that we used for the first order expectations it is easy to conclude that the

uninformed’s expectations of (64) are just

E
U
t Et+1Et+2 yt+3 = E

U
t yt+3 (65)

This is because the uninformed cannot forecast the informed forecast of their forecast error; for the

uninformed such forecast error belongs to information they will only receive in the future. Formally

E
U
t

( 1

1−λL

)
εt+1 = E

U
t

( 1

L−λ

)
et+1 = E

U
t

∞∑

j=0

λ j et+1 = 0.
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For the informed

E
I
tEt+1Et+2 yt+3 = E

I
t yt+3 −Y0µ(1−µ)λ2

( 1−λ2

1−λL

)
εt −Y1(1−µ)λ

( 1−λ2

1−λL

)
εt

= E
I
t yt+3 − (1−µ)(Y0µλ

2 +Y1λ)
( 1−λ2

1−λL

)
εt

Therefore the average expectation is

EtEt+1Et+2 yt+3 = Et yt+3− (1−µ)(Y0µ
2λ2 +Y1µλ)

( 1−λ2

1−λL

)
εt . (66)

Comparing this to (61) one can already see a pattern in the coefficients multiplying the noise term related

to the forecast error of the uninformed. Iterating the process over and over one obtains the generic form

of the higher order market expectations for prices

EtEt+1 · · ·Et+ j yt+ j+1 = Et yt+ j+1− (1−µ)
( j∑

i=1

(µλ)i Y j−i

)( 1−λ2

1−λL

)
εt

A.6 HOBS: DISPERSED INFORMATION CASE We begin by noticing that

Ei tEt+1 yt+2 =µEi tE
I
t+1 yt+2+ (1−µ)Ei tE

U
t+1 yt+2. (67)

From the hierarchical equilibrium, we know that EU
t+1 yt+2 = E

I
t+1 yt+2 −Y0

1−λ2

1−λL
εt+1. We also notice that,

because the information set of an arbitrary agent i is strictly smaller than the information set of an in-

formed agent of the hierarchical equilibrium and because the law of iterated expectations holds at the

single agent level, we have Ei tEi t+1E
I
t+1 yt+2 = Ei t yt+2. Because of the second property we also have that

Ei tE
U
t+1 yt+2 = Ei tEi t+1E

U
t+1 yt+2. Therefore

Ei tEt+1 yt+2 =µEi t yt+2+ (1−µ)Ei t yt+2 − (1−µ)Y0Ei t
1−λ2

1−λL
εt+1. (68)

The crucial step in the proof is then to show that the expectation in the last term is non-zero. In order to

do so we first notice that L−λ
1−λLεt+2 = 1−λ2

1−λLεt+1 −λεt+2 and so

E

(
1−λ2

1−λL
εt+1|εt

i , y t

)
= E

(
L−λ

1−λL
εt+2|εt

i , y t

)
. (69)

Then, the crucial step in the proof is to show that

E

(
L−λ

1−λL
εt+2|εt

i , y t

)
=µλ

(
1−λ2

)

1−λL
εi t . (70)
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where µ≡ σ2
ε

σ2
ε+σ2

v
. Our prediction formula follows that of Theorem 1 and Whittle (1983)

[
L−2ge,(ε,y) (L)

(
Γ
∗(L−1)T

)−1
]
+
Γ
∗(L)−1 (71)

where Γ
∗(L) is defined in (51) and ge,(ε,y) (L) is the variance-covariance generating function between the

variable to be predicted and the variables in the information set. In our case we have that

ge,(ε,y) (L) =
[
B (L)σ2

ε B (L)
(
L−1 −λ

)
Y

(
L−1

)
σε

]

Plugging in the explicit forms and solving out the algebra

L−2ge,(ε,y) (L)
(
Γ
∗(L−1)T

)−1 = 1p
σ2
ε+σ2

v

[
L−2 L−λ

1−λL
σ2
ε+L−2

(
L−1 −λ

)
Y

(
L−1

) σ2
ε

σv
−L−2 σ2

ε+σ2
v

σv
σε

]

Applying the annihilator operator to the RHS we see that the second term of the vector goes to zero.

For the first term, the assumption that Y (L) is analytic inside the unit circle ensures that L−2
(
L−1 −λ

)
Y

(
L−1

)

does not contain any term in positive power of L. We are then left with

[
L−2 L−λ

1−λL

]

+
=

λ
(
1−λ2

)

1−λL
, (72)

Summarizing we have shown that

Ei t

(
1−λ2

1−λL
εt+1

)
= 1p

σ2
ε+σ2

v

λ
(
1−λ2

)

1−λL
σ2
εw 1

i t

Substituting in w 1
i t
= 1p

σ2
ε+σ2

v

(εt +vi t ) completes the proof. The proof can be generalized to expectations

of order higher than 1 following the same pattern as the derivations in the hierarchical case.

A.7 PROOF OF COROLLARY 3 The proof follows immediately from the restriction (12). Condition (4.a)

is derived by taking the limit of (12) as µ→ 0 (or equivalently τ→ 0). This is the equilibrium that would

exist if no informed agents populated the model. Intuitively, if no hierarchical information equilibrium

exists in this case, then none would exist if informed agents had positive measure. This restriction is

given by A(λ) = 0 for |λ| < 1, which for the process A(λ) = (1+θλ)/(1−ρλ), implies θ ∈ (0,1). Notice

that because θ > 0, λ→−1 from above. Substituting λ = −1 into (12) and solving for µ gives condition

(4.c). When λ=−1, the equilibrium converges to the full-information case. Setting µ⋆ equal to unity and

solving for θ gives condition (4.b).
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B HOMOGENEOUS-BELIEFS ECONOMIES

The model consists of an equilibrium equation and a stochastic, exogenous process

yt =βEt yt+1+xt (73)

xt = A(L)εt , εt ∼ N (0,σ2
ε) (74)

where xt = A(L)εt = A0εt + A1εt−1 +·· · , L is a lag operator Lxt ≡ xt−1, and the coefficients satisfy square

summability,
∑

j A2
j
<∞. Representation (74) places no restrictions on the serial correlation properties

of xt . The Wold Decomposition Theorem allows for such a general representation.

B.1 FULL INFORMATION Following standard procedure, we look for a solution of the endogenous vari-

able, yt , that satisfies square summability and exists in the agents’ information set. The full-information

solution assumes that the agents have perfect knowledge of current and past shocks. Denote this full

information as F I with an information set, ΩF I
t = {εt− j }∞

j=0
, which suggests a guess for the equilibrium

of the form yt = Y (L)εt = Y0εt +Y1εt−1 + ·· · . Conditional expectations are evaluated via the Wiener-

Kolmogorov optimal prediction formula,

E
F I
t [yt+1] = E[Y (L)εt+1|εt ,εt−1, ...] = L−1[Y (L)−Y0]εt

= L−1[Y0 +Y1L+Y2L+·· ·−Y0]εt = Y1εt +Y2εt−1 +·· · (75)

The prediction formula instructs the agent to subtract off the εt+1 term as it does not enter the agents’

information set and has an expected value of zero.

Substituting the equilibrium guess yt = Y (L)εt and the expectation (75) into equation (73) gives

Y (L)εt = βL−1[Y (L)−Y0]εt + A(L)εt . We use techniques first established in Whiteman (1983) that rely

on analytic function theory to solve for the rational expectations equilibrium. This methodology invokes

the Riesz-Fischer Theorem, which states that the sequential problem of finding Y0,Y1,Y2, ... has an equiv-

alent representation as a functional problem in the Hardy space of analytic functions Y (z). Our problem

becomes one of finding the function Y (z) that solves

Y (z) =βz−1[Y (z)−Y0]+ A(z)

=
z A(z)−Y0

z −β
(76)

Following a long tradition in rational expectation modeling, we look for solutions to the sequential prob-

lem that satisfy square summability,
∑

j Y 2
j
< ∞ (i.e., we look for bounded or stationary equilibria).

Square summability is tantamount to analyticity inside the unit circle in the space of z-transforms. The

Y (z) process given by (76) has a pole at z = β. If |β| > 1, the Y (z) process is analytic inside the unit circle

but has a undetermined parameter Y0. In this case, Y0 cannot be uniquely pinned down and the rational

expectations model has an infinite number of equilibria. If |β| < 1, the process is not analytic inside the

unit circle and Y0 is needed to remove the pole at z =β, which gives Y0 =βA(β). Under this scenario, the
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rational expectations solution is unique and given by

Y (z) =
z A(z)−βA(β)

z −β
(77)

which is the ubiquitous Hansen-Sargent formula [Hansen and Sargent (1980)].

This equation displays the cross-equation restrictions known as the “hallmark” of rational expecta-

tions models, but there is also an informational interpretation to the H-S formula that we take advantage

of throughout the paper. The first component, z A(z)/(z −β), is the perfect foresight equilibrium; that is,

iterate (73) forward, impose the law of iterated expectations and a no-bubble condition to solve

yt = E
F I
t

∞∑

j=0

β j xt+ j = E
F I
t

(
L A(L)

L−β

)
εt (78)

If we appended the agents’ information set with future values of εt , such that agents have perfect fore-

sight (PF) ΩPF
t = {εt− j }∞

j=−∞, (78) (after removing the expectation operator) would be the rational expec-

tations equilibrium. Therefore the last element of the H-S formula, βA(β)/(z −β), represents the con-

ditioning down associated with only observing current and past εt ’s. Subtracting off this precise linear

combination of future shocks, βA(β)
∑

j β
jεt+ j , stems from knowledge that the model is given by (73)-(3)

and the information set of ΩF I
t = {εt− j }∞

j=0
.7

B.2 INCOMPLETE INFORMATION Working within a representative agent framework, we now derive an

equilibrium with incomplete information. By incomplete information, we mean an equilibrium that

exists in a subspace of the sequence generated by the fundamental shocks, {εt− j }∞
j=0

.

Returning to our endogenous signal extraction problem of (4), we must first find the corresponding

innovations associated with observing current and past yt ; thus, we must flip the λ root from inside the

unit circle to outside the unit circle without changing the moments of the yt process. This transformation

is accomplished through the use of Blaschke factors, Bλ(L) ≡ (L−λ)/(1−λL)

yt = (L−λ)Ỹ (L)εt = (1−λL)Ỹ (L)et (79)

et =
(

L−λ

1−λL

)
εt = (L−λ)(εt +λεt−1 +λ2εt−1 +·· · ) (80)

Note that we are operating in well-defined Hilbert spaces with the covariance generating function serving

as the modulus and that Blaschke factors have a modulus of one, Bλ(z)Bλ(z−1) = 1, supporting the

equality in (79). Note also that conditional expectations differ in the et and εt spaces.

The guess of the equilibrium process (79) must be verified, and uniquely so. This is accomplished by

forming the expectation conditional on Partial Information (PI)

E[yt+1|ΩPI
t = {yt− j }∞j=0] = E[(1−λL)Ỹ (L)et+1] = L−1[(1−λL)Ỹ (L)− Ỹ0]et (81)

7As shown in Appendix A of Hansen and Sargent (1980), agents who know the model is given by (78) will form expectations

optimally by subtracting off the principal part of the Laurent series expansion of A(z) around β, which is βA(β)/(z −β).
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which is simply the Wiener-Kolmogorov optimal prediction formula applied to (79). Substituting this

expectation into (73) gives

(1−λL)Ỹ (L)Bλ(L)εt =βL−1[(1−λL)Ỹ (L)− Ỹ0]Bλ(L)εt + A(L)εt

We then repeat the functional analysis described above by solving for yt , assuming β ∈ (0,1),

(z −λ)Ỹ (z) =
z A(z)−βA(β)Bλ(z)/Bλ(β)

z −β
(82)

However, there is an additional step that we must take in order to prove that the expectation is consistent

with (81) and that the sequence {yt− j }∞
j=0

does not reveal εt . We assumed that the endogenous variable is

not invertible in λ, this is only true if the RHS of (82) vanishes at z = λ. We have also assumed that there

is only one zero inside the unit circle (i.e., Ỹ (L) contains no zeroes inside the unit circle). This places

restriction on the exogenous process, namely, A(λ) = 0, which we write as xt = (L−λ)Ã(L)εt , where Ã(L)

does not have any zeros inside the unit circle. If this restriction holds (which is tantamount to assuming

the exogenous process is not fundamental for εt ), then the unique rational expectations equilibrium is

given by (82). If this restriction does not hold, then the endogenous variable will completely reveal the

underlying shocks and the equilibrium will be the full-information equilibrium of Section B.1. We have

proved the following:

Proposition 4. Consider the economy described by (73)–(74) with expectations given by E[yt+1|{yt− j }∞
j=0

].

If β ∈ (0,1) and

A(λ) = 0 (83)

with |λ| ∈ (0,1), then the unique rational expectations equilibrium is given by

yt =
(

L(1−λL)Ã(L)−β(1−λβ)Ã(β)

L−β

)
et (84)

et =
(

L−λ

1−λL

)
εt

If |λ| > 1, then the rational expectations equilibrium is unique and given by (77).

From the perspective of the uninformed agents, the model lives in the et space as shown by (84). The

model is interpreted as solving the following discounted expectation,

yt = E
U
t

∞∑

j=0

β j xt+ j = E
U
t

(
L(1−λL)Ã(L)

L−β

)
et (85)

As with the full-information case, subtracting off the corresponding linear combination of future shocks,

β(1−λβ)Ã(β)
∑

j β
j et+ j , delivers the conditioning down term of the rational expectations equilibrium in

(84). However, the following corollary derives the equilibrium in the εt space.
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Corollary 4. There is an equivalent representation of the equilibrium of Proposition 4 given by

yt =
(

L(L−λ)Ã(L)−β(β−λ)Ã(β)

L−β

)
εt −

[
βÃ(β)(1−λ2)

1−λL

]
εt (86)

Representation (84) is the equilibrium in et space and (86) is the equilibrium in εt space. They are

equivalent representations of the same equilibrium. Representation (84) is the standard looking Hansen-

Sargent formula because this is the space that contains the agents’ information set (current and past et’s).

The first element on the right-hand side of (86) is the Hansen-Sargent formula under full information.

The last term on the RHS represents the conditioning down due to partial information. Notice that as |λ|
approaches one from below, this term vanishes and the model converges to the full-information equi-

librium.

To shed light on the representation (86), note the straightforward decomposition

E
U
t

∞∑

j=0

β j xt+ j = E
I
t

(
∞∑

j=0

β j xt+ j

)
−βÃ(β)(1−λ2)

∞∑

k=0

λkεt−k (87)

The uninformed agents’ expectations of fundamentals at each future date can be written as a linear com-

bination of the expectation assuming agents see current and past structural shocks EF I
t (xt+ j ), and a term

given by linear combination of past εt ’s that the agents do not observe. Notice that the linear combina-

tion is just the dynamic noise term of equation (6) multiplied by the weight βÃ(β). As we show below,

the representation of Corollary 4 is particularly useful when interpreting equilibrium objects like higher-

order beliefs.
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