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Abstract

In the context of dynamic models of incomplete information, we show that slight perturbations

to the agents’ information sets can lead to vastly different Rational Expectations Equilibria

(REE). The difference is due to a hidden instability (i.e., an exact cancellation of an explosive

autoregressive root) that is a property of the full-information equilibrium but not present in

the partial-information equilibrium. Due to the multitude of potential equilibria, we use least-

squares learnability as a refinement mechanism. We find that models with complete information

revelation are not least-squares learnable, while information structures that do not fully reveal

the underlying shocks are learnable. We show that learnability relates to the informational

stability properties of an equilibrium, whereby an equilibrium is said to be informationally

unstable if it vanishes when information is slightly perturbed. We present application to a

model with productivity shocks and nominal rigidities. In both cases we show that equilibria

with complete information are informationally unstable, and thus not learnable; while equilibria

that preserve incomplete information are informationally stable and learnable.
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1 Introduction

Within the context of a stylized but quite general model, we show that slight perturbations to

agents’ information sets can lead to vastly different Rational Expectations equilibria. Due to the

multitude of potential equilibria, we use least-squares learnability as an equilibrium refinement

mechanism. Our main theorem shows that models in which the endogenous variables reveal per-

fectly the unobservable state of the world are not robust to small perturbations in the information

set of the agents, and are therefore not learnable. However, models in which incomplete information

persists in equilibrium can be learned using a least-squares algorithm.

Borrowing from the engineering literature, we show that the reason complete information equi-

libria cannot be learned is due to a “hidden instability,” which is an exact cancellation of an

explosive autoregressive root. The cancellation works only along the equilibrium path. When in-

formation is perturbed, the hidden instability emerges and the process becomes explosive. For

this reason, least-squares algorithms will not converge. This hidden instability does not emerge in

partial-information equilibria. Perturbations to agents’ information sets in this case do not lead to

explosive dynamics and these equilibria are least-squares learnable. We show that this is due to

how expectations are formed when information is incomplete.

This type of instability and connection to the learning literature is, to our knowledge, novel.

There has been a recent resurgence in dynamic models with incomplete information, but the ques-

tion of robustness of these equilibria has yet to be fully studied.1 We follow a rich history of papers

that use least-squares learning as an equilibrium refinement criteria [see Evans and Honkapohja

(2001)]. However, we are unaware of any papers that focus exclusively on learning in models of

incomplete information.

It has been argued that learnable equilibria are more likely to occur in reality and therefore

learnability is an important criterion for rational expectations models [Evans and Honkapohja

(2001)]. In light of our results, we argue that more emphasis should be placed on the learnability of

incomplete-information, rational expectations equilibria. While our results pertain to a particular

class of models, this paper lays out the framework for which that can be accomplished.

Finally, we present an application of our results. We analyze a stylized macroeconomic model

with nominal rigidities and permanent productivity shocks similar to Lorenzoni (2009). We show

that the fully revealing rational expectations equilibrium of that model is not learnable when the

productivity process takes the form of an S-shaped diffusion process. We then solve for an incom-

plete information rational expectations equilibrium of the model and show that it is learnable. We

analyze the impulse response of output and inflation to productivity innovations and we show that

in the incomplete information equilibrium a positive productivity innovation leads to alternating

1Recent examples include Woodford (2003a), Pearlman and Sargent (2005), Allen, Morris, and Shin (2006), Bac-
chetta and van Wincoop (2006), Hellwig (2006), Adam (2007), Gregoir and Weill (2007), Angeletos and Pavan (2007),
Kasa, Walker, and Whiteman (2011), Lorenzoni (2009), Rondina (2009), Angeletos and La’O (2009), Angeletos and
La’O (2011), Hellwig and Venkateswaran (2009), Graham and Wright (2010), Nimark (2011), Hassan and Mertens
(2011). Kasa (2000) contains an E-stability result for the model of Townsend (1983).



oscillations of output, employment and inflation around their respective trends. More specifically,

both output and inflation are above trend and below trend at the same time, so that, conditional

on the productivity innovation output and inflation display a positive correlation over the cycle.

In other words, for the learnable equilibrium, a positive supply shock (in productivity) generates a

dynamic response that looks like alternating positive and negative demand shocks.

2 Model, Information, and Equilibrium

We perform the analysis in the simplest possible setting to make clear the issues at hand.2 In

particular, we focus on a univariate model with a representative agent facing incomplete information

about the state of the economy. The equilibrium equation is specified as

yt = κE
[

yt+1|Ωt

]

+ ϕat (2.1)

with |κ| ≤ 1 and ϕ ∈ R. Let Ωt denote the information set of the representative agent at time t, to

be specified shortly, and at is an exogenous stochastic process given by

at − ρat−1 = A(L)ut (2.2)

where |ρ| ≤ 1, A(L) is a square summable lag polynomial in non-negative powers of L and ut ∼

N(0, σ2
u). The immediate consequence of working in a linear-quadratic Gaussian setting is that the

expectational operator corresponds to the linear projection operator, a property that will apply

to all results in the paper. In what follows we restrict our attention to non-explosive solutions to

(2.1).

As is standard in the rational expectations literature, we assume that agents’ information comes

from two sources–exogenous and endogenous. Exogenous information, denoted Ut, is that which is

not generated by equilibrium forces but is revealed to the agents from outside of the context of the

model (e.g., an exogenous signal about ut). Endogenous information, denoted Vt(y), comes from the

knowledge that yt is generated by (2.1). In our context this results in the entire history of at always

being part of the equilibrium information of the representative agent. This is immediately evident

by considering that, along any equilibrium yt, the representative agent observes the prediction

E
[

yt+1|Vt(y)
]

and so she must be able to compute

at =
1

ϕ
(yt − κE

[

yt+1|Vt(y)
]

) (2.3)

Throughout our analysis we thus take for given that Vt(a) ⊆ Vt(y).

An important benchmark for the following analysis is the rational expectations equilibrium of

(2.1) when the representative agent is (exogenously) endowed with the knowledge of the entire

history of shocks up to time t. We refer to this equilibrium as the Full Information equilibrium.

2Appendix B provides conditions under which the results derived below extend to more complex models.
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Let Vt(x) denote the smallest closed linear subspace spanned by the infinite history of the random

variable xt up to time t, namely xt ≡ {xt, xt−1, xt−2, ....}. In a full information equilibrium it is

assumed that Ωt = Vt(u). The rational expectations equilibrium for the full information case is

well known and given by

yt − ρyt−1 =
ϕ

L− κ

(

LA(L)− κA(κ)
(1 − ρL)

(1 − ρκ)

)

ut (2.4)

If we altered the information structure so that the agents could not condition directly on the

structural shocks but only saw the current and past realizations of endogenous variables, Ωt = Vt(y),

under what conditions would the equilibrium be fully revealing? That is, when would the span of

Vt(y) be equivalent, in mean-square norm, to the span of Vt(u)?

Since Vt(a) ⊆ Vt(y), the answer to this question depends on the properties of A(L), the ex-

ogenous stochastic process. The key feature will be the invertibility of the process, that is to say

whether the observation of the history of at is able to perfectly reveal the history of the innovations

ut. This property is related to the moving average roots of A(L). If the roots are all outside the

unit circle, then A(L) is said to be invertible in current and past at, and the history of at reveals

perfectly the history of ut. On the other hand, if at least one root is inside the unit circle, then A(L)

is non-invertible in current and past at, and the history of at is able to reveal only an imperfect

measure of ut.

When A(L) is non-invertible, at can always be written as

at − ρat−1 = Ã(L)

m
∏

i=1

(1 + θiL)ut, |θi| > 1 for i = 1, ..,m, (2.5)

where m > 0 is the number of roots inside the unit circle and Ã(L) is the invertible portion of

A(L). Restricting our attention to the case of m = 1, with θ ≡ θ1 and ρ = 0, equation (2.5) can be

expanded as3

t−1
∑

j=0

(−θ)jat−j = ut + (−θ)tu0. (2.6)

The process at is invertible when |θ| < 1, which implies that as t grows large, the summation on the

left hand side of (2.6) remains well defined and is exactly equal to ut since the term (−θ)tu0 tends

to zero for any finite u0. When |θ| > 1, at is not invertible and so as t grows larger and larger the

summation on the left hand side does not have a well defined limit. If the structural innovation,

u0 is not observed, which is the assumption under which (2.6) is valid, the exact knowledge of the

structural innovation will never be revealed. Thus, insofar as agents cannot infer the structural

innovations directly, non-invertible representations can be used to formulate incomplete information

3Allowing for an arbitrary ρ is immediate, just substitute any instance of at by the quasi-difference at − ρat−1.
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models [Futia (1981), Townsend (1983), Kasa (2000)].

When the process is non-invertible and ut is not in the exogenous information set, the agents

must solve a filtering problem. The information contained in the history of at in presence of

non-invertibility can be summarized by its Wold fundamental representation, which is

at − ρat−1 = Ã(L)
m
∏

i=1

(θi + L)ũt, (2.7)

ũt ≡
m
∏

i=1

(

1 + θiL

θi + L

)

ut (2.8)

The innovation process ũt is the measure that minimizes the mean squared forecast error in predict-

ing at+1 linearly from its past. It is related to ut via the Blaschke factor, (1 + θiL)/(θi +L).4 The

information contained in ũt is less than that of ut. This is seen by noting that contemporaneous ũt

is a linear combination of past ut’s. Expanding (2.7) with ρ = 0 and m = 1 yields

t−1
∑

j=0

(−θ)−jat−j = ũt + (−θ)−tu0, (2.9)

and as t becomes arbitrarily large, the sum on the left hand side remains well defined for |θ| > 1,

implying that the impact of the initial state u0 dissipates over time. However, the process reveals

ũt, which is a strict subset of the structural innovations ut.

The following proposition characterizes the rational expectations equilibrium for alternative

information structures and specifications of the exogenous process.

Proposition 1. Rational Expectations Equilibria

Case [i.] If m = 0 (A(L) is invertible), the Full Information equilibrium given by (2.4) is the

Rational Expectations Equilibrium, independent of the exogenous information structure Ut.

Case [ii.] If m > 0 (A(L) is not invertible), the Full Information equilibrium (2.4) is the Ra-

tional Expectations Equilibrium from time t > 0 onward if {ut−j , ut−j−1, ..., ut−j−m+1} ∈ Ut with

0 < j < ∞. If j = ∞ the Full Information equilibrium is always the Rational Expectations Equilib-

rium.

Case [iii.] If m > 0 (A(L) is not invertible) and the exogenous information is specified as Ut = {∅}

for t ∈ Z, then the stochastic process

yt − ρyt−1 =
ϕ

L− κ

{

LA(L)− κA(κ)
(1 − ρL)

(1 − ρκ)

∏m
i=1 Bθi(L)

∏m
i=1 Bθi(κ)

}

ut (2.10)

where

Bθi(L) ≡
1 + θiL

θi + L
,

4See Hansen and Sargent (1991) and Lippi and Reichlin (1994) for more on Blaschke factors.
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is the unique stationary rational expectations equilibrium of (2.1).

Proof. See Appendix A.

Case [i.] is trivial. Case [ii.] states that if A(L) is not invertible, then the structural innovations

must be included in the agents’ information set directly via the exogenous information Ut in order

for the full information equilibrium to be the rational expectations equilibrium. Case [ii.] also

distinguishes between that of an arbitrary long, yet finite, history, from that of a non-finite history.

This is useful for thinking about cases in which the state was exactly observed at some distant

point in the past.5 Case [iii.] gives the equilibrium in which information remains incomplete. The

agents’ filtering problem delivers the structural shocks of (2.7), and by virtue of cross-equation

restrictions, these filtered innovations enter the endogenous variable according to (2.10).

Thus we have established that there are two rational expectations equilibria – one that is

fully revealing (2.4), and one in which incomplete information is preserved (2.10). Moreover, we

demonstrate in Section 4 that the dynamic properties of these equilibria are markedly different.

Given that there are two rational expectations equilibria that (a priori) are equally likely, we follow

Evans and Honkapohja (2001), among others, and propose least-squares learnability as a refinement

mechanism.

3 Learning and Incomplete Information

3.1 Main Result Our learning analysis follows the methods and the notation of Chapter 6 in

Evans and Honkapohja (2001). The first step in the learning analysis is to recast the equilibrium

relationships in terms of a bi-variate process for the equilibrium outcome yt and the implied forecast

errors, which we will denote by et.
6 Formally, for any rational expectations information equilibrium

define the forecast error process as et ≡ yt − E
[

yt|Vt−1(y) ∨ Ut−1

]

, which is the span of past

endogenous variables and exogenous information.

Without loss of generality, we will focus on the case of at = ut + θut−1 with θ > 1.7 Under this

specification for at, both rational expectations equilibria can be then represented as

yt = κηet + ϕat (3.1)

et = yt − ηet−1, (3.2)

5Interestingly, this relates to the approach of “truncating” the informational incompleteness by assuming the
current state is revealed to the agents at some point in the future, an assumption that simplifies the characterization
of the rational expectations solution and that is widely used in the incomplete information literature since Townsend
(1983) first proposed it. Recent examples of papers that employ the truncation approach include Hellwig (2002) and
Lorenzoni (2009). For a formal treatment of truncation see Nimark (2011). In our context the horizon of truncation
is inconsequential for the equilibrium dynamics: as long as the state is eventually revealed, the full information of
Case [.ii] applies.

6We are thankful to Pierre-Olivier Weill for suggesting to us to work within the bi-variate representation that
includes the process of forecast errors.

7The results carry through with ρ ∈ (0, 1) and Ã(L) invertible. The case of negative θ follows the same steps but
it would make notation more burdensome.
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where the coefficient η takes different forms depending on the equilibrium under consideration.

More precisely, denote by η̂ the coefficient for Full Information equilibrium (2.4), and by η∗ the

coefficient for the Incomplete Information equilibrium (2.10), where

η̂ =
θ

1 + κθ
and η∗ =

1

κ+ θ
. (3.3)

We focus on least-squares learning of the parameter η and specify the learning algorithm following

Evans and Honkapohja (2001)

yt = κηt−1et + ϕat (3.4)

et = yt − ηt−1et−1 (3.5)

ηt =
1
t

∑t
s=1 yses−1

1
t

∑t
s=1 e

2
s−1

, (3.6)

with η0 and e0 given. This learning system can be written in recursive form as follows

et = −
ηt−1

1− κηt−1
et−1 +

ϕ

1− κηt−1

(

ut + θut−1

)

(3.7)

ηt = ηt−1 +
1

t
S−1
t−1etet−1 (3.8)

St = St−1 +
1

t

(

e2t − St−1

)

+
1

t2
−t

t+ 1

(

e2t − St−1

)

, (3.9)

where St represents the time-t estimate of the variance-covariance matrix of the process for the

forecast errors. To apply the formal results of Chapter 6 in Evans and Honkapohja (2001) it is

useful to represent the system in compact notation, so we define

Xt =







et

et−1

ut






and λt =

(

ηt

St

)

. (3.10)

In the two equilibria that we are considering the vector λ takes the form

λ̂ =

(

η̂

ϕ2(1 + κθ)2

)

, and λ∗ =

(

η∗

ϕ2(κ+ θ)2

)

. (3.11)

The learning algorithm can then be written as

Xt = G(λt−1)Xt−1 + F (λt−1)ut (3.12)

λt = λt−1 + γtH(λt−1,Xt) + γ2t ρt(λt−1,Xt), (3.13)
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where

G(λt−1) ≡







− ηt−1

1−κηt−1
0 θϕ

1−κηt−1

1 0 0

0 0 0






, F (λt−1) ≡







ϕ
1−κηt−1

0

1






,

γt =
1

t
, H(λt−1,Xt) =

(

S−1
t−1etet−1

e2t − St−1

)

, ρt(λt−1,Xt) =

(

0
−t
t+1

(

e2t − St−1

)

)

.

An equilibrium λ can be learned if the above dynamic system converges to λ as t → ∞ for λ0 in

a neighborhood of λ. For such convergence to happen several properties of the components of the

dynamic system have to be satisfied. A necessary condition for convergence is that the process

for Xt is stationary in a neighborhood of λ, which corresponds to the Eigenvalues of G(λ) having

modulus smaller than one.

The Eigenvalues of the matrix G(λ̂) for the Full Information case are given by the vector

(−θ, 0, 0). Since we have assumed that θ > 1 and G(λ) is continuous, it follows that the process Xt

is non-stationary in a neighborhood of λ̂, hence the equilibrium cannot be learned by least-squares

methods.

Alternatively, the Eigenvalues of the matrix G(λ∗) in the Incomplete Information case are given

by the vector (−1
θ
, 0, 0), where | − 1/θ| < 1 which, together with the continuity of G(λ) gives

necessity. Sufficiency comes by demonstrating E-stability of the learning algorithm. This is done

by analyzing the limiting mapping T (λ) defined as

T (λ) ≡ lim
t→∞

E
(

H(λ,Xt(λ))
)

=

(

S−1σ1

σ0 − S

)

, (3.14)

where σi is the auto-covariance of order i of the forecast errors process et under λ. E-stability is

verified by studying the stability of the differential equation

dλ

dτ
= T (λ)− λ (3.15)

in the neighborhood of λ∗. It is possible to show that λ∗ is a stationary point of the above ordinary

differential equation and that such stationary point is stable. This last property is obtained by

deriving the partial derivatives matrix of T (λ) evaluated at λ∗, which is8

DT (λ∗) =

(

− (θ+κ)2

θ
0

τSη(θ) −1

)

, (3.16)

where τSη(θ) is a function whose form is not influential for the stability analysis. The Eigenvalues

of DT (λ∗) must be all negative for the stationary point to be stable. Note that this is verified

under our maintained assumption θ > 1. Hence, the incomplete information equilibrium λ∗ can be

8See Appendix A for details
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learned by the least-squares algorithm (3.4)-(3.6).

We have established the following theorem.

Theorem 1. The Full Information rational expectations equilibrium λ̂ cannot be learned by the

least-squares algorithm (3.4)-(3.6) for any λ0 in a neighborhood of λ̂. The Incomplete Information

equilibrium λ∗ can always be learned by the least-squares algorithm (3.4)-(3.6) for any λ0 in a

neighborhood of λ∗.

3.2 Informational (In)Stability The reason behind the result of Theorem 1 lies in the

structure of the dynamic process for the forecast errors et. As we demonstrate below, there is a

hidden instability in the forecast errors associated with the Full Information equilibrium that is not

present in the Incomplete Information case. This instability implies that any perturbation in the

agents’ information set will cause the Full Information equilibrium to become non-stationary. The

learning algorithm exposes this instability.

To substantiate this point, let at = ut + θut−1 with |θ| > 1, as above, and assume that the

representative agent is endowed with the knowledge of some state u0, so that u0 ∈ Ut for any t ≥ 0.

Proposition 1 gives the Full Information equilibrium as

yt = ϕ(1 + θκ)ut + ϕθut−1. (3.17)

Note that (3.17) implies E
[

yt+1|Ut ∨ Vt(y)
]

= ϕ−1
E
[

θut|Ut ∨ Vt(y)
]

. Using (2.3) lagged once one

can write

E
[

θut|Ut ∨ Vt(y)
]

= E
[

θut + θ2ut−1 − θ2ut−1|Ut ∨ Vt(y)
]

= θat − E
[

θ2ut−1|Ut ∨ Vt(y)
]

= θat − θ
ϕ

κ

(

yt−1 − at−1).

Once substituted into the equilibrium equation one obtains

yt = −θyt−1 + ϕ

(

(1 + θκ) + θL

)

at, (3.18)

which must hold in the Full Information rational expectations equilibrium (3.17).

Note that in this representation, the equilibrium variable yt has an autoregressive root at |θ| > 1

that is explosive, in the sense that any realization of the innovation different from zero would result

in non-stationary behavior of the variable yt. Despite the unstable autoregressive root, however,

yt is still a stationary process, as equation (3.17) clearly shows. The reason that reconciles this

apparent contradiction is that the autoregressive root of yt in (3.18) exactly cancels with the moving

average root of at: this potential instability is exactly defused by the dynamics of at. In the optimal

control literature jargon, the representation (3.18) is said to harbor a “non-minimum phase zero”

which can be canceled with the equivalent pole. Mathematically such cancellation is legitimate,

but for the optimal control problem it creates a “hidden instability”: if the system is slightly
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misspecified, the cancellation fails and the hidden pole drives the system to instability.9

To see how the instability can manifest, consider equation (3.18) at time t = 1,

y1 = ϕθa0 − θy0 + ϕ(1 + θκ)a1. (3.19)

The condition for unstable root to be exactly diffused by the root of the at process is that a0 and

y0 must be specified as

ϕa0 − y0 =
κ

θ
u0. (3.20)

Because of the hidden instability, the dynamic equation (3.18) must be initialized at the initial

condition (3.20) in order for it to be stationary. If the initialization is done at a different point,

the unstable root would make the process explosive. To see this, suppose that instead of observing

u0 perfectly, the representative agent is given a noisy signal v0 = u0 +
θ
κ
σεε, where σε > 0 and

ε ∼ N(0, 1). To evaluate stability we maintain that the agent acts under the assumption that

σε = 0. The initial condition is then given by

ϕa0 − y0 =
κ

θ
v0. (3.21)

Noting that κ
θ
v0 =

κ
θ
u0 + σεε, and using (3.18) to solve for the dynamics forward one obtains

yt = ϕ(1 + θκ)ut + ϕθut−1 + θtσεε, (3.22)

which is non-stationary and diverging with respect to (3.17).

While we interpret σε > 0 as a perturbation to the information set of the representative agent,

one could also interpret the realization σεε 6= 0 as a perturbation to κ in (3.21), in which case the

perturbation is to the knowledge of the structure of the model, as in a standard learning exercise.

Solving the dynamics forward using (3.18) one would then also obtain (3.22), where the initial

perturbation results in unstable dynamics. This shows how, in the context of our model, learning

about realizations of shocks and learning about equilibrium parameters are closely related.

Conversely, the same decomposition for the Incomplete Information equilibrium yields

yt = −
1

θ
yt−1 +

ϕ

θ

(

θ + κ+ L

)

at (3.23)

The equilibrium process yt has an auto-regressive representation, as in (3.18), but the autoregressive

root is now stationary, since |1
θ
| < 1. As opposed to the Full Information case, there are no hidden

instabilities being created in the equilibrium dynamics. Consider equation (3.23) at time t = 1,

y1 =
1

θ

(

ϕa0 − y0
)

+ ϕ

(

θ + κ

θ

)

a1 (3.24)

9See Skogestad and Postlethwaite (2005) for a textbook analysis of hidden instabilities in dynamic systems.
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In this case, to ensure that y1 is exactly equal to the equilibrium level after an arbitrary history of

innovations ut’s the initial condition should be specified as

ϕa0 − y0 = ϕκũ0 (3.25)

The second equality in this expression is intuitive: in the same way as the initial condition of the

Full Information equilibrium was a linear function of u0, the initial condition for the Incomplete

Information equilibrium is a linear function of ũ0, the innovation observed by the agent.

To evaluate the informational stability of (3.23) we proceed as we did for the Full Information

case. Suppose that the agent’s information set is perturbed by providing the agent with the noisy

signal w0 = ũ0 +
1
ϕκ

σεε, where σε > 0 so that

ϕa0 − y0 = ϕκw0. (3.26)

Since ϕκw0 = ũ0 + σεε, the dynamic solution to (3.23) becomes

yt = ϕ
(

θ + κ+ L
)

ũt +
1

θt
ε. (3.27)

Under |1
θ
| < 1 the accumulated effect of the perturbation disappears as t grows larger and the per-

turbed equilibrium converges back to the original equilibrium. Hence, the Incomplete Information

equilibrium is stable.

The following proposition generalizes the examples.

Proposition 2. If m > 0 (A(L) is non-invertible), the Full Information equilibrium contains a

hidden instability. If the information set is perturbed (σε > 0), the dynamics will become non-

stationary and diverge away from the full information equilibrium. Conversely, the Incomplete

Information equilibrium does not contain a hidden instability. If the information set is perturbed

(σε > 0), the dynamics of the perturbed system will revert back to the original dynamics.

Proof. See Appendix A.

This proposition provides the intuition behind the result of Theorem 1. The Full Information

equilibrium contains an explosive root which exactly cancels with the zero in the moving average

of at. If the forecast error process is not initialized at the equilibrium value, the explosive root will

not cancel with the zero and the initial misalignment would grow indefinitely.

In the learning algorithm, the forecast error is not initialized at the equilibrium value and so

the explosive root prevents the convergence of the learning algorithm. The Incomplete Information

equilibrium does not contain a hidden instability. Even though the forecast error is not initialized

at the equilibrium value, the learning algorithm converges and is E-stable.

To make this point more concrete, consider first the full information equilibrium. Suppose

that the learning algorithm is initiated at the point η0 = η̂, where η̂ = θ
1+κθ

. In addition let

S0 = ϕ2(1 + κθ)2. Under these values, if one were to assume that the initial forecast error e0 is
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equal to what one would get in the RE equilibrium, i.e. ϕ(1 + θκ)u0, then beliefs would remain

at their correct initial value η̂ through the entire algorithm. In accordance with our exercise

for informational stability, we instead assume that the initial forecast error is perturbed by the

disturbance ε, so that e0 = ϕ(1 + θκ)(u0 + ε). Working through the algebra one can show that

the beliefs evolve as ηt = η̂ + σ2
ε ĉt(θ), where ĉt(θ) is a ratio of polynomials in θ with t being the

difference between the highest degree of the numerator and the highest degree of the denominator.

For t → ∞ one then has ĉt → ∞ when θ > 1, which shows how the beliefs under the learning

algorithm diverge off the equilibrium value. It is instructive for the purpose of this discussion to

consider the case of t = 1, which results in ηt = η̂ − σ2
εθ. In other words, the first deviation from

the equilibrium value is a function of the variance of the disturbance ε, and the size of θ, so that

the larger is θ, the larger the deviation.

For the Incomplete Information equilibrium we perform the same exercise and set η0 = η∗,

where η∗ = 1
θ+κ

, and let S0 = ϕ2(θ + κ)2. Once again, by setting e0 to equal what one would

get in the RE equilibrium, i.e. ϕ(κ + θ)ũ0, then beliefs would remain at their correct initial value

η∗. We perturb the initial forecast error by setting e0 = ϕ(κ + θ)(ũ0 + ε). The pattern of beliefs

for η can now be summarized by ηt = η∗ + σ2
εc

∗
t (

1
θ
), where c∗t (

1
θ
) is a ratio of polynomials in 1/θ

with t being the difference between the highest degree of the numerator and the highest degree of

the denominator. In this case one cannot readily conclude that the limiting behavior rests on η∗,

although we know, from the analysis of Section 3.1, it eventually does. However, by looking at the

case of t = 1, one can see that the first step of the learning algorithm implies ηt = η∗ − σ2
ε
1
θ
, which

clearly show that the larger is the size of θ, the smaller the deviation from the true equilibrium

value.

As a final comment on the discussion above, we point out that the divergence of the learning

algorithm in the Full Information case is due to the divergence of the forecast error process et.

Unless that process is initialized at the exact equilibrium value, the learning algorithm has a built-

in non-stationarity (which lies in the Eigenvalue of the matrix G(λ)), such that the forecast errors

build up and eventually diverge.

4 Application: Productivity Shocks with Nominal Rigidity

In this section we apply our results to an incomplete information model with nominal rigidities

and productivity shocks. The specific form of the model is taken from Lorenzoni (2009), and it

represents an instance of the class of monetary models popularized by Clarida, Gali, and Gertler

(1999) and Woodford (2003b), among others.

The linearized economy is fully described by an output equation, an inflation equation and a

11



monetary policy rule as

yt = E(yt+1|Ωt)− it + E(πt+1|Ωt) (4.1)

πt = α(yt − at) + βE(πt+1|Ωt) (4.2)

it = φπt, (4.3)

where all the constants have been dropped for convenience, and α > 0, β ∈ (0, 1) and φ > 0. Ωt

represents the information set of the representative agent, to be specified shortly. The variable

at represents the exogenous process for aggregate productivity in the economy, while the term

yt − at is a measure of the real marginal costs along the labor market equilibrium. In Lorenzoni

(2009) the productivity process at is assumed to be equal to the sum of a permanent component

and a transitory component. Agents are interested in forecasting future productivity and so they

engage in predicting the unobserved permanent component, but the transitory component acts as

noise in their signal extraction problem. We follow Lorenzoni (2009) and specify a process for

aggregate productivity with a permanent component modeled as a stochastic trend, but instead of

superimposing a transitory component we allow for a richer moving average structure, which, as will

become clearer, still prevents agents from disentangling the permanent component in productivity.

More specifically we let

at = at−1 + ut + θut−1, (4.4)

with ut ∼ N (0, σ2
u). We assume that θ > 1, which results in productivity at following a diffusion

process with a typical S-shape behavior: for a given innovation ut, productivity responds slowly

at first - with an impact coefficient of 1, and more strongly subsequently - with a delayed impact

coefficient of θ > 1, before leveling-off to the new permanent level (1+θ)ut. Arguably, such dynamic

behavior adequately captures episodes of innovations in productivity that have permanent effects

(cf. Canova (2003)). Importantly, in our setting the slow diffusion dynamics also affects available

information. Under (4.4), the observation of the current and past realizations of at is insufficient

to recover the current and past realizations of ut, which results in agents engaging in a dynamic

signal extraction problem in order to predict at+1.

Our objective is to characterize the dynamic rational expectations equilibrium with incomplete

information. To that end we assume, for simplicity, that the initial time is not specified, we let

Ut = {∅} for all t’s and define the information set as Ωt ≡ Vt(y, π). From the structural equations

(4.1)-(4.3) agents are always able to compute aggregate productivity at, and so in any equilibrium

it will be that Vt(a) ⊆ Vt(y, π). We conjecture that E(yt+1|Ωt) = E(at+1|Ωt), which implies

E(πt+1|Ωt) = 0.10 Substituting the interest rate rule into the output equation and the inflation

10To see this just lead the inflation equation forward one period and apply the expectational operator on both
sides, taking into account the conjecture for the expectations of output and aggregate productivity. In formulating
our conjecture we closely follow Lorenzoni (2009).
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equation under the above conjecture the equilibrium condition reduces to

yt = κE
[

yt+1|Ωt

]

+ (1− κ)at, (4.5)

where κ ≡ 1
1+αφ

∈ (0, 1). The equilibrium equation we want to study is thus of the form (2.1) with

ϕ = (1− κ). Once the solution for yt is obtained, the solution for πt immediately follows.

The Full Information equilibrium of (4.5) is a straightforward application of Case [.ii] in Propo-

sition 1 and it is given by the ARMA(1, 1) process

ỹt − ỹt−1 = (1 + θκ)ut + θ(1− κ)ut−1. (4.6)

To evaluate the informational stability properties of (4.6) we express the equilibrium equation in

terms of observed variables

ỹt − ỹt−1 = −θ(ỹt−1 − ỹt−2) + θ(1− κ)(at − at−1). (4.7)

We know from Section 3.2 that the autoregressive root −θ dictates the informational stability of

the equilibrium. If θ ≤ 1 the equilibrium is informationally stable, while for θ > 1 the equilibrium

is informationally unstable. In the latter case equation (4.7) has a hidden instability at θ, which

cancels along the equilibrium path, but it affects the dynamics around the equilibrium if perturbed.

Therefore, under our assumption that at follows an S-shaped diffusion pattern, i.e. under θ > 1, fo-

cusing on equilibrium (4.6) would be a choice that is not robust to the information set initialization,

as highlighted by Proposition 2, and thus not least-squares learnable by Theorem 1.

We next compute the informationally stable rational expectations equilibrium for (4.5). Appli-

cation of Case [.iii] in Proposition 1 shows that the equilibrium is given by an ARMA(2, 2) of the

form

y∗t −
θ − 1

θ
y∗t−1 −

1

θ
y∗t−2 =

θ + κ

θ
ut +

(

1− κ

θ
+ θ + κ

)

ut−1 + (1− κ)ut−2. (4.8)

The equilibrium process inherits the unit root of the productivity process, and an additional stable

auto-regressive root in the output process at 1
θ
. Note that in equation (4.8) there are no hidden

instabilities, which means that any perturbation around the equilibrium path would eventually

dissipate over time.

We have thus established the following corollary to Theorem 1.

Corollary 1. In the economy with nominal rigidity and productivity shocks described by equations

(4.1)-(4.4), the equilibrium (4.6) is not least-squares learnable, while equilibrium (4.8) is least-

squares learnable.

The corollary offers a criterion to select across the two equilibria, a choice that turns out to have

important consequences in terms of the positive implications that the model can deliver. Figure 1

plots the impulse responses for productivity at (dotted line), the informationally unstable full in-
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formation solution (4.6) (black dashed line), and the informationally stable incomplete information

solution (4.8) (blue solid line) for both output and employment, to a one-time standard deviation

increase in ut. The parameters values are set to α = .05, β = .7, φ = 1.5, ρ = 1 and θ = 2.

Looking at the left-side panel, in the unstable solution output increases at impact close to the new

permanent level, as the extent of the innovation is fully anticipated. The increase in productivity

is limited at impact because of the initial slow diffusion, which means that employment has to in-

crease in order for output to be higher at impact, which can be seen in the right-side panel. In the

subsequent period productivity reaches the new permanent level, so does output, and employment

goes back to its long run trend. In the unstable solution, the economy’s response to a supply shock

has a profile that resembles a response to a demand shock, but it only lasts one period.

Consider now the unstable solution. The initial reaction of output is positive, but is around

only 50% of the new higher trend. This level is still higher than the increase in productivity and so

employment increases at impact, but only by a 25% of the increase in the unstable case. One period

from impact agents learn that the permanent increase in productivity might actually be higher

than previously thought, and output overshoots the trend by around a 20% margin. Productivity

is now at the new higher level, but the overshooting in output requires a higher employment to be

achieved, which means that employment is still above trend one period after impact, and - in our

numerical example - still higher than the level at impact. The subsequent period agents realize that

the innovation might have been smaller than they thought, which creates a drop in output below

trend, and a drop in employment below trend. In other words, two periods after the onset of the

productivity innovation and a gradual boom in output and employment, the economy experiences

a recession. The same type of oscillation then repeats itself with declining magnitude, until the

economy eventually settles on the new higher trend.
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Figure 1: Impulse Response of Output and Employment to Innovation in Productivity

In summary, applying our analysis to the equilibrium of the stylized monetary model (4.1)-
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(4.3) when the productivity process at displays a diffusion-type dynamics, results in a rational

expectations equilibrium with several differences compared to the equilibrium on which a researcher

unaware of our analysis may focus. From a normative perspective, the equilibrium (4.8) is robust

to perturbations in the information set and is least-squares learnable, two conditions that would

make it preferable to equilibrium (4.6). From a positive perspective, the equilibrium (4.8) displays

a rich propagation dynamic that not only generates a demand-shock like response at impact, which

is qualitatively similar to what happens in equilibrium (4.6), but also generates a longer expansion

of output and employment over trend, and, remarkably, a subsequent recession in both output and

employment (both below trend), followed by a smaller expansion, and so on. This all in response to

a permanent positive productivity innovation with a one-period gradual diffusion in the economy.

5 Conclusion

In this paper, we studied the least-squares learnability of Rational Expectations equilibria in dy-

namic models with incomplete information. We showed that equilibria where the endogenous

variables resolve the information incompleteness cannot be learned and possess hidden instabilities,

in the sense that a slight perturbation in the endogenous information set of the agents along the

equilibrium path can lead to explosive dynamics. We then presented a class of dynamic rational ex-

pectations equilibria that are learnable for the same parameter space. We concluded by presenting

an application from an established literature.

Given the importance of learnability in models of rational expectations equilibrium, under-

standing the extent to which our results generalize would be of interest. In particular, analyzing

the relationship between informational stability and learnability in a broader class of models would

be a useful extension and is left to future research. Another obvious future line of work would

be to estimate models with incomplete information. Learnable equilibria, it has been argued, are

more likely to occur in reality [Evans and Honkapohja (2001)]. Examining the empirical fit of

models with the particular form of non-revealing equilibria discussed here would be an interesting

extension.
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6 Appendix A: Proofs

Proof of Proposition 1 The Information Equilibrium will be a Full Information Equilibrium if

the Hilbert space generated by Ωt spans the space of the sequence of underlying structural shocks,

{ut−j}
∞
j=0. The first two cases are straightforward: [i.] If m = 0, {at−j}

∞
j=0 spans the same space as

{ut−j}
∞
j=0 because at is fundamental for ut. Therefore even if the exogenous information Ut is the

empty set, the Information Equilibrium will be the Full Information Equilibrium as at can always be

inferred from the structural relationship (2.1). [ii.] If m > 0 and {ut−j , ut−j−1, ..., ut−j−m+1} ∈ Ut

with 0 < j < ∞, then by initializing the state at some time t < 0, agents have access to the

full knowledge of the innovations ut from t onward and the Information Equilibrium will be a Full

Information Equilibrium. As an example, suppose a moving average representation has two distinct

zeros, xt = (L−λ1)(L−λ2)εt with |λ1| < 1, |λ2| < 1. If agents observe εt−1 and εt−2 directly, then

we may write the moving average as xt − εt−2 + (λ1 + λ2)εt−1 = λ1λ2εt, which is always invertible.

When j = ∞, technically speaking the initialization of the state is not well defined and so the

condition on the exogenous information set Ut has no bite, and the existence of a Full Information

equilibrium cannot be excluded.

For case [iii.], we begin by guessing a functional form for the equilibrium price as

yt = Q(L)

m
∏

i=1

(1− λiz)ũt (6.1)

with

ũt =

m
∏

i=1

Bλi
(L). (6.2)

and

Bλi
(L) ≡

1− λiL

λi − L
. (6.3)

Under such guess one can derive the conditional expectation for future productivity and substitute

it into the equilibrium equation (2.1) and get the following z-transform expression

Q(z)
m
∏

i=1

(z − λi) = κz−1[Q(z)
m
∏

i=1

(1− λiz)−Q0]
m
∏

i=1

Bλi
(z) + ϕA(z)

= κz−1[Q(z)
m
∏

i=1

(z − λi)−Q0

m
∏

i=1

Bλi
(z)] + ϕA(z)

Working out the algebra yields

Q(z)(z − κ)

m
∏

i=1

(z − λi) = ϕzA(z) −Q0

m
∏

i=1

Bλi
(z) (6.4)

For |κ| < 1, stationarity requires the Q(·) process to be analytic inside the unit circle, which will

not be the case unless the process vanishes at the poles z = {λi, κ} for every i. For simplicity, we
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assume λi 6= λj for any i 6= j, however this restriction can be relaxed [see, Whiteman (1983)].

Evaluating at z = λi provides a restriction on the A(·) process,

A(λi) = 0 for i = 1, ...,m, (6.5)

which implies that λi = −1/θi for all i. By Proposition 10.4 of Conway (1991), this restriction

guarantees that the knowledge of the model does not reveal any additional information than the

posited price sequence. Finally, evaluating (6.4) at z = κ gives

Q0 =
κA(κ)

∏m
i=1 Bλi

(κ)
(6.6)

Substituting this into (6.4) and rearranging the algebra returns expression (2.10).

Proof of Proposition 2

The proof of the proposition consists in expressing the Full Information equilibrium in terms of the

information set of the rational expectations equilibrium, similarly to (3.18) and then argue that the

expression is unstable with respect to the initialization of the information set. The Full Information

equilibrium for m > 0 can be expressed as

(yt − ρyt−1)

m
∏

i=1

(1 + θiL) = ϕ

(

LA(L)(1− ρκ)− κA(κ)(1 − ρL)

)

(L− κ)(1 − ρκ)Ã(L)
(at − ρat−1). (6.7)

The lag polynomial on the right hand side has a zero at κ by construction that cancels with the root

at the denominator. It follows that the polynomial is stationary. On the other hand, the equilibrium

representation for yt has an AR(m+1) component, where m of the roots are inside the unit circle.

Unless the initial conditions on the information set (y0, y−1, ....., y−m) and (a0, a−1, ....., a−m) are

chosen to exactly cancel the explosive roots, the equilibrium dynamics will diverge.

Proof of Theorem 1

To complete the proof of Theorem 1 we need to evaluate the stability of the mapping

T

(

η

S

)

=

(

Tη(η, S)

TS(η, S)

)

=

(

S−1σ1(η)

σ0(η) − S

)

(6.8)

where the two covariances are given by

σ0(η) =
ϕ2

(1− ηκ)2 − η2

(

1−
2η

1− ηκ
θ + θ2

)

(6.9)

σ1(η) =
ϕ2

(1− ηκ)2 − η2

(

θ −
η

1− ηκ

)(

1−
ηθ

1− ηκ

)

(6.10)
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We use these expressions to compute the matrix of partial derivatives

DT

(

η

S

)

=

(

DTη(η, S)

DTη(η, S)

)

=

(

dTη

dη
(η, S)

dTη

dS
(η, S)

dTS

dη
(η, S) dTS

dS
(η, S)

)

(6.11)

evaluated at η = η∗ = 1
θ+κ

and S = S∗ = ϕ2(θ + κ)2. Proceeding with the algebra one obtains

matrix (3.16), and the least-squares learning convergence immediately follows.

7 Appendix B: Multivariate Extension

The results of Theorem 1 and Proposition 2 extend beyond univariate settings. In this section we

describe how to proceed in order to generalize those results to multivariate settings. Consider the

generic multivariate rational expectations model

Γ0yt = Γ1yt−1 +Ψzt +Πηt, (7.1)

where yt is an n × 1 vector of endogenous variables, zt is an m × 1 vector of exogenous random

shocks, η is a k × 1 vector of expectation errors, which satisfy Etηt+1 = 0 for all t. Γ0 and Γ1

are n × n coefficient matrices, along with Ψ (n × m) and Π (n × k). The model collapses to the

univariate setting of Section 2 when zt = ut + θut−1.

Sims (1998) uses a generalized Schur decomposition of Γ0 and Γ1 to show that there exist

matrices such that Q′ΛZ ′ = Γ0, Q
′ΩZ ′ = Γ1, Q

′Q = Z ′Z = In×n, where Λ and Ω are upper-

triangular. The ratios of the diagonal elements of Ω and Λ, ωii/λii, are the generalized eigenvalues.

Defining wt = Z ′yt and pre-multiplying (7.1) by Q, yields the decomposition

[

Λ11 Λ12

0 Λ22

] [

w1,t

w2,t

]

=

[

Ω11 Ω12

0 Ω22

][

w1,t−1

w2,t−1

]

+

[

Q1

Q2

]

(Ψzt +Πηt) (7.2)

The system is partitioned so that the generalized eigenvalues imply an explosive path for w2,t and

a stable path for w1,t. To ensure stability of the system, w2,t must be solved forward. Sims shows

that the forward solution of (7.1) is

yt = Θ1yt−1 +Θ0zt +Θy

∞
∑

s=1

Θs−1
f ΘzEtzt+s (7.3)

where H = Z

[

Λ−1
11 −Λ−1

11 (Λ12 − ΦΛ22)

0 I

]

, Θ0 = H

[

Q1 − ΦQ2

0

]

Ψ

and Θy = −H2, Θ1 = Z1Λ
−1
11 [Ω11(Ω12 −ΘΩ22)]Z, Θf = Ω−1

22 Λ22, and Θz = Ω−1
22 Q2Ψ.11

The most basic informational assumption that will deliver non-invertibility is zt = ǫi,t−q for

some i, which is non-invertible because the moving average has a zero inside the unit circle at

11We assume that the conditions necessary for a unique solution to exist hold. Specifically that the row space of
Q1Π be contained in that of Q2Π [See Sims (1998)].

18



L = 0. If the agents do not observe the structural shocks, ǫit, (i.e., Ut = {0} for t ∈ Z) then the

last term in (7.3) drops out of the solution. Under this information structure, the solution (7.3)

emits a stable vector-autoregression representation in current and past observables. Thus there are

no hidden instabilities in the model.

However, if the agents observe the structural shocks directly (i.e., Ut = {ǫi,t−j}
∞
j=0 for i =

1, ...,m), the equilibrium is given by

yt = Θ1yt−1 +Θ0ǫt−q +ΘyΘz[ǫt−q+1 +Θf ǫt−q+2 + · · · +Θq−1
f ǫt] (7.4)

which is the multivariate analog of (3.17). The term Θf is the multivariate analog to θ−1 in Section

3. In order to apply Proposition 2, we must show that the equilibrium is non-invertible in current

and past yt. Writing the equilibrium as a moving average, yt = A(L)ǫt, a sufficient condition for

non-inveritiblity is for detA(L) to have a zero inside the unit circle. This will, of course, depend

upon the model itself and parameterization of the model.
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