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Abstract

We generalize the linear rational expectations solution method of Whiteman (1983)

to the multivariate case. This facilitates the use of a generic exogenous driving

process that must only satisfy covariance stationarity. Multivariate cross-equation

restrictions linking the Wold representation of the exogenous process to the endogenous

variables of the rational expectations model are obtained. We argue that this approach

offers important insights into rational expectations models. We give two examples

in the paper—an asset pricing model with incomplete information and a monetary

model with observationally equivalent monetary-fiscal policy interactions. We relate

our solution methodology to other popular approaches to solving multivariate linear

rational expectations models, and provide user-friendly code that executes our approach.
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1 Introduction

Whiteman (1983) lays out a solution principle for solving stationary, linear rational expectations

models. The four tenets of the solution principle are: [i.] Exogenous driving processes are taken

to be zero-mean linearly regular covariance stationary stochastic processes with known Wold rep-

resentation; [ii.] Expectations are formed rationally and are computed using Wiener-Kolmogorov

formula; [iii.] Solutions are sought in the space spanned by time-independent square-summable

linear combinations of the process fundamental for the driving process; [iv.] The rational expecta-

tions restrictions are required to hold for all realizations of the driving processes. The purpose of

this paper is to extend Whiteman’s solution principle to the multivariate setting.

The solution principle is general in the sense that the exogenous driving processes are assumed

to only satisfy covariance stationarity. Solving for a rational expectations equilibrium is nontrivial

under this assumption and Whiteman demonstrates how powerful z-transform techniques can be

used to derive the appropriate fixed point conditions.

The techniques advocated in Whiteman (1983) are not well known. This could be because

the literature contains several well-vetted solution procedures for linearized rational expectations

models (e.g., Sims (2002), Anderson (2006)) or because the solution procedure requires working

knowledge of concepts unfamiliar to economists (e.g., z-transforms). We provide an introduction

to these concepts and argue that there remain several advantages of Whiteman’s approach on both

theoretical and applied grounds. First, the approach only assumes that the exogenous driving

processes possess a Wold representation, allowing for a relaxation of the standard assumption that

exogenous driving processes follow an autoregressive process of order one, AR(1), specification. As

recently emphasized in Curdia and Reis (2010), no justification is typically given for the AR(1)

specification with little exploration into alternative stochastic processes despite obvious benefits

to such deviations.1 Second, models with incomplete information or heterogeneous beliefs are

easier to solve using the z-transform approach advocated by Whiteman. Kasa (2000) and Walker

(2007) show how these methods can be used to generate analytic solutions to problems that were

approximated by Townsend (1983) and Singleton (1987).2 Third, as shown in Kasa (2001) and Lewis

and Whiteman (2008), the approach can easily be extended to allow for robustness as advocated by

Hansen and Sargent (2011) or rational inattention as advocated by Sims (2001). Finally, there are

potential insights into the econometrics of rational expectations models. Qu and Tkachenko (2012)

demonstrate how working in the frequency-domain can deliver simple identification conditions.

The contribution of the paper is to extend the approach of Whiteman (1983) to the multivariate

setting and (re)introduce users of linear rational expectations models to the analytic function

1This is true despite the fact that Kydland and Prescott (1982), the paper that arguably started the real business
cycle literature, contains an interesting deviation from the AR(1) specification.

2Taub (1989), Kasa, Walker, and Whiteman (2008), Rondina (2009), and Rondina and Walker (2012) also use
the space of analytic functions to characterize equilibrium in models with informational frictions. Seiler and Taub
(2008), Bernhardt and Taub (2008), and Bernhardt, Seiler, and Taub (2010) show how these methods can be used
to accurately approximate asymmetric information equilibria in models with richer specifications of information.
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solution technique. We provide sufficient (though not exhaustive) background by introducing a

few key theorems in Section 2.1 and walking readers through the univariate example of Whiteman

(1983) in Section 2.2. Section 3 establishes the main result of the paper. There is a chapter devoted

to multivariate analysis in Whiteman (1983) that has known errors (see, Onatski (2006) and Sims

(2007)). Section 3.3 provides an example of these errors and demonstrates why our approach does

not suffer from the same setback. In effect, our approach is a straightforward way to maintain the

methodology of Whiteman by providing robust existence and uniqueness criteria. Finally, Section

4 provides a few examples that demonstrate the usefulness of solving linear rational expectations

models in the frequency-domain. An online Appendix B provides a user’s guide to the MATLAB

and Maple code that executes the solution procedure. To the best of our knowledge, our symbolic

code, along with the Anderson-Moore Algorithm [Anderson and Moore (1985), Anderson (2006)],

are the only publicly available code that symbolically solves for rational expectations equilibria.

The code is available at http://pages.iu.edu/ walkertb/.

2 Preliminaries

Elementary results concerning the theory of stationary stochastic processes and the residue calculus

are necessary for grasping the z-transform approach advocated here. This section introduces a few

important theorems that are relatively well known but is by no means exhaustive. Interested

readers are directed to Brown and Churchill (2013) and Whittle (1983) for good references on

complex analysis and stochastic processes, and Kailath (1980) for results on matrix polynomials.

Sargent (1987) provides a good introduction to these concepts and discusses economic applications.

2.1 A Few Useful Theorems The first principle of Whiteman’s solution procedure assumes

that the exogenous driving processes are zero-mean linear covariance stationary stochastic processes

with no other restrictions imposed. The Wold representation theorem allows for such a general

specification.

Theorem 1. [Wold Representation Theorem] Let {xt} be any (n×1) covariance stationary stochas-

tic process with E(xt) = 0. Then it can be uniquely represented in the form

xt = ηt +A(L)εt (1)

where A(L) is a matrix polynomial in the lag operator with A(0) = In and
∑∞

s=1AsA
′
s is convergent.

The process εt is n-variate white noise with E(εt) = 0, E(εtε
′
t) = Σ and E(εtε

′
t−m) = 0 for m 6= 0.

The process εt is the innovation in predicting xt linearly from its own past:

εt = xt − P[xt|xt−1, xt−2, ...] (2)

where P[·] denotes linear projection. The process ηt is linearly deterministic; there exists an n vector
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c0 and n× n matrices Cs such that without error ηt = c0 +
∑∞

s=1Csηt−s and E[εtη
′
t−m] = 0 for all

m.

The Wold representation theorem states that any covariance stationary process can be written

as a linear combination of a (possibly infinite) moving average representation where the innovations

are the linear forecast errors for xt and a process that can be predicted arbitrarily well by a linear

function of past values of xt. The theorem is a representation determined by second moments of

the stochastic process only and therefore may not fully capture the data generating process. For

example, that the decomposition is linear suggests that a process could be deterministic in the

strict sense and yet linearly non-deterministic; Whittle (1983) provides examples of such processes.

The innovations in the Wold representation are generated by linear projections which need not be

the same as the conditional expectation (E[xt|xt−1, xt−2, ...]). However, our focus here will be on

linear Gaussian stochastic processes as is standard in the rational expectations literature. Under

this assumption, the best conditional expectation coincides with linear projection.

The second principle advocated by Whiteman is that expectations are formed rationally and are

computed using Wiener-Kolmogorov optimal prediction formula. Consider minimizing the forecast

error associated with the k-step ahead prediction of xt = A(L)εt =
∑∞

j=0 ajεt−j by choosing

yt = C(L)εt =
∑∞

j=0 cjεt−j :

min
yt

E(xt+k − yt)
2 = min

{cj}
E

(

L−k
∞∑

j=0

ajεt−j −
∞∑

j=0

cjεt−j

)2

= min
{cj}

E

( k−1∑

j=0

ajεt+k−j +

∞∑

j=0

(aj+k − cj)εt−j

)2

= σ2ε

k−1∑

j=0

a2j + σ2ε

∞∑

j=0

(aj+k − cj)
2 (3)

Obviously, (3) is minimized by setting cj = aj+k, which yields the mean-square forecast error of

σ2ε
∑k−1

j=0 a
2
j . Due to the Riesz-Fischer Theorem, this sequential problem has an equivalent repre-

sentation as a functional problem.

Theorem 2. [Riesz-Fischer] Let D(
√
r) denote a disk in the complex plane of radius

√
r centered

at the origin. There is an equivalence (i.e. an isometric isomorphism) between the space of r-

summable sequences
∑

j r
j|fj|2 < ∞ and the Hardy space of analytic functions f(z) in D(

√
r)

satisfying the restriction

1

2πi

∮

f(z)f(rz−1)
dz

z
<∞

where
∮

denotes (counterclockwise) contour integration around D(
√
r). An analytic function satis-

fying the above condition is said to be r-integrable.3

3This theorem is usually proved for the case r = 1 and for functions defined on the boundary of a disk. For further
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The Riesz-Fischer theorem implies that the optimal forecasting rule can be derived by finding

the analytic function C(z) on the unit disk |z| ≤ 1 corresponding to the z-transform of the {cj}
sequence, C(z) =

∑∞
j=0 cjz

j , that solves

min
C(z)∈H2

1

2πi

∮

|z−kA(z) − C(z)|2 dz
z

(4)

where H2 denotes the Hardy space of square-integrable analytic functions on the unit disk, and
∮

denotes (counterclockwise) integration about the unit circle. The restriction C(z) ∈ H2 ensures

that the forecast is casual (i.e., that the forecast contains no future values of ε’s).

The sequential forecasting rule, cj = aj+k, has the functional equivalent

C(z) =

∞∑

j=0

cjz
j =

[
A(z)

zk

]

+

(5)

where A(z) =
∑∞

j=0 ajz
j and the operator [·]+ is defined, for a sum that contains both positive and

negative powers of z, as the sum containing only the nonnegative powers of z.4 The beauty of the

prediction formula (5) is its generality. It holds for any covariance stationary stochastic process.

As an example, consider the AR(1) case, xt = ρxt−1 + εt with |ρ| < 1. Here A(z) = (1− ρz)−1 and

(5) yields

C(z) =

[
1

(1− ρz)zk

]

+

= [z−k(1 + ρz + ρ2z2 + · · · )]+

= ρk(1 + ρz + ρ2z2 + · · · ) = ρk

1− ρz

which delivers the well-known least-square predictor ρkxt.
5

The third principle assumes that solutions are sought in the space spanned by the time-

independent square-summable linear combinations of the process fundamental for the driving pro-

cess. Consider the moving average process xt = A(L)ut; the innovations ut are said to be funda-

mental for the xt process if ut ∈ span{xt−k, k ≥ 0}, i.e., if the innovations span the same space as

the current and past observables. By construction, the innovations in the Wold representation the-

orem are fundamental. This implies that for any covariance stationary exogenous driving process,

there will always exist a unique fundamental representation. As we show in Section 4, the spanning

conditions prove extremely convenient for backing out the information content of exogenous and

endogenous variables in dynamic, incomplete information rational expectations equilibria.

Following Whiteman (1983), our solution procedure takes advantage of matrix polynomial fac-

exposition see Sargent (1987).
4For a detailed derivation of (5) from (4), see Lewis and Whiteman (2008).
5It is often more convenient to express prediction formulas in terms of the x series as opposed to past forecast

errors as in (5). If the process has an autoregressive representation, then one may write the prediction formula as
B(L)xt, where B(z) = A(z)−1[z−kA(z)]+.
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torization, in particular the Smith (or canonical) form decomposition. The following theorem and

its proof and corollaries can be found in Kailath (1980).

Theorem 3. [Smith Form] For any m × n polynomial matrix P (z) =
∑s

j=0 Pjz
j there exists

elementary row and column operations, or corresponding unimodular matrices U(z) and V (z) such

that

U(z)P (z)V (z) = Λ(z) (6)

with

Λ(z) =











λ1(z) 0 . . .

0
. . . 0

... λr(z)

0 0











(7)

where r is the (normal) rank of P (z) and the λi(z)’s are unique monic scalar polynomials such that

λi(z) is divisible by λi−1(z); U(z) and V (z) are matrix polynomials of sizes m×m and n×n, with

constant nonzero determinants.

This decomposition is useful because it allows us to isolate the roots of the polynomial matrix

P (z) and identify roots inside (and outside) the unit circle as shown in the following corollary.

Corollary 4. If P (z) is a square polynomial matrix whose determinant is nonzero on the unit

circle and P (0) is nonsingular, then P (z) can be written as P (z) = S(z)T (z) where the roots of det

S(z) are inside the unit circle and those of det T (z) are outside the unit circle.

Given that U(z) and V (z) are unimodular, U(z)−1 and V (z)−1 exist. Factor each of the

polynomials λi(z) such that the roots of λi(z) are inside the unit circle and those of λi(z) are

outside. Therefore we can write P (z) = S(z)T (z) where S(z) = U(z)−1diag(λ1(z), ..., λq(z)) and

T (z) = diag(λ1(z), ..., λq(z))V (z)−1.

2.2 Univariate Case It is instructive to work through a univariate example of Whiteman

(1983). There is nothing new here but it will set the stage for the generalization in the next

section. Consider the following generic rational expectations model

Etyt+1 − (ρ1 + ρ2)yt + ρ1ρ2yt−1 = xt, xt = A(L)εt, εt
iid∼ N(0, 1) (8)

where εt is assumed to be fundamental for xt (i.e., A(L) is assumed to have a one-sided inverse

in non-negative powers of L). Following the solution principle, we will look for a solution that

is square-summable in the Hilbert space generated by the fundamental shock ε, yt = C(L)εt
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(third tenet). If we invoke the optimal prediction formula (5), then Etyt+1 = [C(L)/L]+εt =

L−1[C(L) − C0]εt. Together with the fourth tenet of the solution principle (i.e., that the rational

expectation restrictions hold for all realizations of ε), this implies that (8) can be written in z-

transform as

z−1[C(z)− C0]− (ρ1 + ρ2)C(z) + ρ1ρ2zC(z) = A(z)

Multiplying by z and rearranging delivers

C(z) =
zA(z) + C0

(1− ρ1z)(1 − ρ2z)
(9)

Appealing to the Riesz-Fischer Thereom, square-summability (stationarity) in the time domain

is tantamount to analyticity of C(z) on the unit disk. The function C(z) is analytic at z0 if it

is continuously (complex) differentiable in an open neighborhood of z0.
6 Any rational function

(f(z)/g(z)) where f(·) and g(·) are polynomials will be analytic on the unit disk provided g(z) 6= 0

at any point inside the unit circle. The extent to which this is true for C(z) depends upon the

parameters ρ1 and ρ2.

As shown in Whiteman (1983), there are three cases one must consider. First, assume that

|ρ1| < 1 and |ρ2| < 1. Then (9) is an analytic function on |z| < 1 and the representation is given

by

yt =

[
LA(L) + C0

(1− ρ1L)(1 − ρ2L)

]

εt (10)

For any finite value of C0, this is a solution that lies in the Hilbert space generated by {xt} and

satisfies the tenets of the solution principle. Thus, we have existence but not uniqueness because

C0 can be set arbitrarily.

The second case to consider is |ρ1| < 1 < |ρ2|. In this case, the function C(z) has an isolated

singularity at ρ−1
2 , implying that C(z) is not analytic on the unit disk. In this case, the free

parameter C0 can be set to remove the singularity at ρ−1
2 by setting C0 in such a way as to cause

the residue of C(·) to be zero at ρ−1
2

lim
z→ρ−1

2

(1− ρ2z)C(z) =
ρ−1
2 A(ρ−1

2 ) + C0

1− ρ1ρ
−1
2

= 0

Solving for C0 delivers C0 = −ρ−1
2 A(ρ−1

2 ). Substituting this into (10) yields the following rational

expectations equilibrium

yt =

[
LA(L)− ρ−1

2 A(ρ−1
2 )

(1− ρ2L)(1 − ρ1L)

]

εt (11)

6Analytic is synonymous with holomorphic, regular and regular analytic.
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The function C(z) is now analytic and (11) is the unique solution that lies in the Hilbert space

generated by {xt}. The solution is the ubiquitous Hansen-Sargent prediction formula that clearly

captures the cross-equation restrictions that are the “hallmark of rational expectations models”

[Hansen and Sargent (1980)].7

The final case to consider is 1 < |ρ1| and 1 < |ρ2|. In this case, (9) has two isolated singularities

at ρ−1
1 and ρ−1

2 , and C0 cannot be set to remove both singularities.8 Hence in this case, there is no

solution in the Hilbert space generated by {xt} and we do not have existence.

3 Generalization

This section extends the univariate solution method of Whiteman (1983) to the multivariate case.

We also document how our approach is not susceptible to situations in which Whiteman’s multi-

variate solution method delivers inconsistent existence and uniqueness criteria.

3.1 Multivariate Case The multivariate linear rational expectations models can be cast in

the form of

Et

[
m∑

k=−n

ΓkL
kyt

]

= Et

[
l∑

k=−n

ΨkL
kxt

]

(12)

where L is the lag operator: Lkyt = yt−k, yt is a (p×1) vector of endogenous variables, {Γk}mk=−n and

{Ψk}lk=−n are (p× p) and (p× q) matrix coefficients, and Et represents mathematical expectation

given information available at time t including the model’s structure and all past and present

realizations of the exogenous and endogenous processes.9 xt is a (q×1) vector covariance stationary

exogenous driving process with known Wold representation

xt =

∞∑

k=0

Akεt−k ≡ A(L)εt (13)

where εt = xt − P[xt|xt−1, xt−2, . . .] and P[xt|xt−1, xt−2, . . .] is the optimal linear predictor for xt

conditional on observing {xt−j}∞j=1. Also, each element of
∑∞

k=0AkA
′
k is finite.

One of the benefits of our approach is that the modeler does not have to specify which elements

of the endogenous vector are predetermined as in Blanchard and Kahn (1980). The form of (12)

makes clear what are exogenous and endogenous variables.

To illustrate how we get a model into the form of (12), consider the standard stochastic growth

7Our methodology can also handle unit roots. For example, suppose xt = (1− L)A(L)εt. The solution, C(L)εt,
would then inherit the unit root via the cross-equation restriction.

8As discussed by Whiteman (1983), the problem remains even if ρ1 = ρ2.
9While not studied explicitly here, the approach taken in this paper can easily be adapted to study models with

“sticky information” [Mankiw and Reis (2002)] or “withholding equations” [Whiteman (1983)] by replacing Et with
Et−j for any finite j, or models with perfect foresight. Indeed, the inclusion of l periods of lags for exogenous driving
processes already allows for the possibility that agents have foresight about some of the future endogenous variables.
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model with log preferences, inelastic labor supply, complete depreciation of capital, and Cobb-

Douglas technology. The Euler equation and aggregate resource constraint, after log-linearizing,

reduce to the following bivariate system in (ct, kt) which must hold for t = 0, 1, 2, . . ., i.e.

Etct+1 = ct + (α− 1)kt + Etat+1

1− αβ

αβ
ct + kt =

1

αβ
at +

1

β
kt−1

where (α, β) are parameters of preference and technology and at represents the technology shock.

We can rewrite the above bivariate system into the form of (12)

Et

















(

1 0

0 0

)

︸ ︷︷ ︸

Γ−1

L−1 +

(

−1 1− α
1−αβ
αβ 1

)

︸ ︷︷ ︸

Γ0

L0 +

(

0 0

0 − 1
β

)

︸ ︷︷ ︸

Γ1

L









(

ct

kt

)

︸ ︷︷ ︸

yt









= Et

















(

1

0

)

︸ ︷︷ ︸

Ψ−1

L−1 +

(

0
1
αβ

)

︸ ︷︷ ︸

Ψ0

L0









at
︸︷︷︸

xt









where n = m = 1, l = 0, p = 2, and q = 1.

Analogous to the univariate solution procedure, we exploit the properties of polynomial ma-

trices to establish conditions for the existence and uniqueness of solutions to multivariate linear

rational expectations models driven by general exogenous driving processes. Following tenet [iii.],

the solution will be sought in the space spanned by current and past ε. That is, we look for an

equilibrium yt to (12) that is of the form

yt =
∞∑

k=0

Ckεt−k ≡ C(L)εt (14)

where {yt} is taken to be covariance stationary. Note that such moving average representation

of the solution is convenient because it is the impulse response function. For example, the term

Ck(i, j) measures exactly the response of yt+k(i) to a shock εt(j)

(Et − Et−1)yt+k(i) = Ck(i, j)εt(j)

where Ck(i, j) denotes the (i, j)-th element of Ck, yt+k(i) denotes the i-th component of yt+k, and

εt(j) denotes the j-th component of εt.

9



tan & walker: solving generalized multivariate linear re models

3.2 Solution Procedure If we define ηt (resp. νt) as a (p × 1) vector of endogenous (resp.

exogenous) expectational errors, satisfying ηt+k = yt+k − Etyt+k (resp. νt+k = xt+k − Etxt+k) for

all k > 0 and hence Etηt+k = 0 (resp. Etνt+k = 0), then we may write (12) as

m∑

k=−n

ΓkL
kyt =

l∑

k=−n

ΨkL
kxt +

n∑

k=1

(Γ−kηt+k −Ψ−kνt+k) (15)

Similar to Sims (2002), it should be noted that the η terms are not given exogenously, but are

instead determined as part of the model solution.

First, rewrite model (15) as

Γ(L)yt = Ψ(L)xt +

n∑

k=1

(Γ−kηt+k −Ψ−kνt+k)

where Γ(L) =
∑m

k=−n ΓkL
k and Ψ(L) =

∑l
k=−nΨkL

k. Applying (14) and the Wiener-Kolmogorov

optimal prediction formula gives

ηt+k = yt+k − Etyt+k = L−k

(
k−1∑

i=0

CiL
i

)

εt

νt+k = xt+k − Etxt+k = L−k

(
k−1∑

i=0

AiL
i

)

εt

Substituting the above expressions, (13), and (14) into (15) gives

Γ(L)C(L)εt =

{

Ψ(L)A(L) +

n∑

k=1

[

Γ−kL
−k

(
k−1∑

i=0

CiL
i

)

−Ψ−kL
−k

(
k−1∑

i=0

AiL
i

)]}

εt

which must hold for all realizations of ε. Thus, the z-transform equivalent satisfies

znΓ(z)C(z) = znΨ(z)A(z) +

n∑

t=1

n∑

s=t

[Γ−sCt−1 −Ψ−sAt−1]z
n−s+t−1

Next, just as in the univariate case, we need to determine the location of the zeros of the

complex polynomial matrix znΓ(z). This is achieved via the Smith canonical decomposition

U(z)znΓ(z)V (z) =










f1(z) 0 · · ·
0 f2(z)
...

. . .

fp(z)










(16)

where f1, . . . , fp are monic polynomials in z, fk+1(z) is divisible by fk(z) for 1 ≤ k ≤ p− 1, U(z) is

10
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a product of elementary row matrices, and V (z) is a product of elementary column matrices. For

i = 1, . . . , p, let

fi(z) =

ri∏

j=1

(z − zij)
mij

︸ ︷︷ ︸

f
i

·
ri∏

j=1

(z − zij)
mij

︸ ︷︷ ︸

f i

where zij ’s are complex-valued roots inside the unit circle with multiplicity mij and zij’s are

complex-valued roots on or outside the unit circle with multiplicity mij.
10 Then

znΓ(z) = U(z)−1










f
1

f
2

. . .

f
p










︸ ︷︷ ︸

S(z)










f1

f2
. . .

fp










V (z)−1

︸ ︷︷ ︸

T (z)

where S(z) is a polynomial matrix such that all roots of det[S(z)] lie inside the unit circle while

T (z) is a polynomial matrix with all roots of det[T (z)] outside the unit circle. Therefore, we have

S(z)−1 =











U1·(z)∏r1
k=1(z−z1k)

m1k

U2·(z)∏r2
k=1(z−z2k)

m2k

...
Up·(z)

∏rp
k=1(z−zpk)

mpk











where Uj·(z) is the jth row of U(z). Substituting this into the equilibrium gives

Tj·(z)C(z) =
Uj·(z)

∏rj
k=1(z − zjk)

mjk

{

znΨ(z)A(z) +

n∑

t=1

n∑

s=t

[Γ−sCt−1 −Ψ−sAt−1]z
n−s+t−1

}

(17)

for j = 1, . . . , p. These functions are not analytic on the unit disk due to the singularities at z = zjk

for k = 1, . . . , rj.

As in the univariate case, the parameters will be set such that the right hand side of (17)

vanishes at z = zjk for k = 1, . . . , rj:

di

dzi

[ rj∏

k=1

(z − zjk)
mjkTj·(z)C(z)

] ∣
∣
∣
∣
z=zjk

= 0, i = 0, . . . ,mjk − 1, k = 1, . . . , rj

10Allowing for the possibility of multiple roots increases the generality and complexity substantially. The examples
in the following section show how our criteria simplify in environments without multiplicities.
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Stacking the above expression yields






















[

Uj·(zj1)(z
n
j1Ψ(zj1)A(zj1)−

∑n
t=1

∑n
s=tΨ−sAt−1z

n−s+t−1
j1 )

](0)

...
[

Uj·(zj1)(z
n
j1Ψ(zj1)A(zj1)−

∑n
t=1

∑n
s=tΨ−sAt−1z

n−s+t−1
j1 )

](mj1−1)

...
[

Uj·(zjrj)(z
n
jrj

Ψ(zjrj)A(zjrj)−
∑n

t=1

∑n
s=tΨ−sAt−1z

n−s+t−1
jrj

)
](0)

...
[

Uj·(zjrj )(z
n
jrj

Ψ(zjrj )A(zjrj )−
∑n

t=1

∑n
s=tΨ−sAt−1z

n−s+t−1
jrj

)
](mjrj

−1)






















︸ ︷︷ ︸

Aj·

=

−






















[

Uj·(zj1)
∑n

s=1 Γ−sz
n−s
j1

](0)
· · ·

[

Uj·(zj1)Γ−nz
n−1
j1

](0)

...
. . .

...
[

Uj·(zj1)
∑n

s=1 Γ−sz
n−s
j1

](mj1−1)
· · ·

[

Uj·(zj1)Γ−nz
n−1
j1

](mj1−1)

...
. . .

...
[

Uj·(zjrj)
∑n

s=1 Γ−sz
n−s
jrj

](0)
· · ·

[

Uj·(zjrj)Γ−nz
n−1
jrj

](0)

...
. . .

...
[

Uj·(zjrj )
∑n

s=1 Γ−sz
n−s
jrj

](mjrj
−1)

· · ·
[

Uj·(zjrj )Γ−nz
n−1
jrj

](mjrj
−1)






















︸ ︷︷ ︸

Rj·










C0

C1

...

Cn−1










︸ ︷︷ ︸

C

Further stacking over j = 1, . . . , p yields

A
[r×q]

= − R
[r×np]

C
[np×q]

(18)

where r =
∑p

j=1

∑rj
k=1mjk.

The properties of equation (18) determine whether the rational expectations equilibrium exists.

Existence cannot be established if at least one column of A is outside of the space spanned by the

columns of R—the endogenous shocks or forecast errors η cannot adjust to offset the exogenous

shocks x. The precise existence condition is that columns of A are strictly spanned by the columns

of R, i.e.

span(A) ⊂ span(R) (19)

Similar to the univariate case outlined above, the function C(z) is not analytic on the open unit

disk due to the zeros inside the unit circle z = zjk. The spanning condition (19) tells us if we have

a sufficient number of free parameters to remove the singularities. However, as we show below,

12
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simply counting the number of zeros inside the unit circle and comparing it to the number of free

parameters is insufficient and can deliver incorrect existence and uniqueness conditions.

To check whether (19) is satisfied, we follow Sims (2002). Let the singular value decompositions

of A and R be given by A = UASAV
′
A and R = URSRV

′
R. Then R’s column space spans A’s if

and only if (I − URU
′
R)UA = 0. If this holds, the candidate values of C can be computed as,

C = −VRS−1
R U ′

RA.

Uniqueness requires that we are able to determine {Ck}∞k=0 uniquely from the parameter restric-

tions supplied by A = −RC. Since V (·) is unimodular, it’s inverse this is equivalent to determining

the coefficients {Dk}∞k=0 of D(z) = V (z)−1C(z), which can be computed using the inversion formula

Dk =
1

2πi

∫

Γ
D(z)z−k−1dz

= sum of residues of D(z−1)zk−1 at poles inside unit circle

Note that the jth row of D(z−1)zk−1 is given by

Uj·(z
−1)zk−1

∏rj
k=1(z

−1 − zjk)
mjk

∏rj
k=1(z

−1 − zjk)
mjk

{

z−nΨ(z−1)A(z−1) +

n∑

t=1

n∑

s=t

[Γ−sCt−1 −Ψ−sAt−1]z
−(n−s+t−1)

}

which has poles inside unit circle at z−1
jk with multiplicity mjk for k = 1, . . . , rj.

11 Some tedious

algebra allows us to write the jth row of each Dk as a function of C that only shows up in the

following common terms shared by all Dk’s

di

dzi

[

Uj·(z
−1)

n∑

t=1

n∑

s=t

Γ−sCt−1z
−(n−s+t−1)

] ∣
∣
∣
∣
z=z−1

jk

, i = 0, . . . ,mjk − 1, k = 1, . . . , rj

Stacking the above expressions yields






















[

Uj·(z
−1
j1 )

∑n
s=1 Γ−sz

−(n−s)
j1

](0)
· · ·

[

Uj·(z
−1
j1 )Γ−nz

−(n−1)
j1

](0)

...
. . .

...
[

Uj·(z
−1
j1 )

∑n
s=1 Γ−sz

−(n−s)
j1

](mj1−1)
· · ·

[

Uj·(z
−1
j1 )Γ−nz

−(n−1)
j1

](mj1−1)

...
. . .

...
[

Uj·(z
−1
jrj

)
∑n

s=1 Γ−sz
−(n−s)
jrj

](0)
· · ·

[

Uj·(z
−1
jrj

)Γ−nz
−(n−1)
jrj

](0)

...
. . .

...
[

Uj·(z
−1
jrj

)
∑n

s=1 Γ−sz
−(n−s)
jrj

](mjrj
−1)

· · ·
[

Uj·(z
−1
jrj

)Γ−nz
−(n−1)
jrj

](mjrj
−1)






















︸ ︷︷ ︸

Qj·










C0

C1

...

Cn−1










︸ ︷︷ ︸

C

Further stacking over j = 1, . . . , p yields QC. Thus A = −RC pins down all the error terms in the

11For k = 0, there is an additional pole inside unit circle at 0.
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system that are influenced by the expectational error η. That is, we use RC to determine QC and

the solution is unique if and only if

span(Q′) ⊂ span(R′) (20)

In other words, determinacy of the solution requires that the columns of R′ span the space spanned

by the columns of Q′, in which case we will have QC = ΦRC for some matrix Φ.12

When (19) and (20) is satisfied, we can obtain the unique analytical solution for yt which is

indexed by C∗
0 , C

∗
1 , . . . , C

∗
n−1

13

C(L)εt = (LnΓ(L))−1

{

LnΨ(L)A(L) +

n∑

t=1

n∑

s=t

[Γ−sC
∗
t−1 −Ψ−sAt−1]L

n−s+t−1

}

εt

The above solution captures all the multivariate cross-equation restrictions linking the Wold repre-

sentation of the exogenous process, A(L), to the endogenous variables of the model. This mapping

is essentially a multivariate version of the celebrated Hansen-Sargent formula, and serves as a key

ingredient in the analysis and econometric evaluation of dynamic rational expectations models.

3.3 Connection to Other Solution Procedures We demonstrate how our approach is

different from the multivariate treatment of Whiteman (1983) and similar to that of Sims (2002)

with specific examples.

The first theorem of Chapter IV of Whiteman (1983) states:

Theorem 5. [Whiteman (1983)] Suppose the model is

Et





n∑

j=0

FjL
−j +

m∑

j=1

GjL
j



 yt = xt (21)

where yt and xt are (q × 1), Fj and Gj are (q × q), and xt has Wold representation given by (13).

Suppose further that Fn is of full rank, that the roots of

det



zn





n∑

j=0

Fjz
−j +

m∑

j=1

Gjz
j







 =

p
∑

j=0

fjz
j

are distinct, and that rq of these roots are inside the unit circle while the other p−rq ≤ (n+m)q−rq
roots lie outside the unit circle. Then

1. if r < n, there are many solutions to (21).

12Similar to the space spanning condition for existence, (20) can be verified using the singular value decompositions
of Q and R.

13We also need to impose a “consistency condition” when (12) is a withholding equation—some relevant information
is concealed from agents so that (12) contains terms like Et−iyt+j for some i, j > 0. See Whiteman (1983) for details.
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2. if r = n, there is one solution to (21).

3. if r > n, there is no solution to (21).

As noted in Onatski (2006) Section 3.3, there is a logical inconsistency between this multivariate

theorem and the univariate counterpart described in Section 2.2. The following example clarifies

this point.14 Consider the following model consistent with (21),

F1Etyt+1 + F0yt +G1yt−1 = xt

where F1 =

(

1 0

0 1

)

, F0 =

(

−(ρ1 + ρ2) 0

0 −(ϕ1 + ϕ2)

)

, G1 =

(

ρ1ρ2 0

0 ϕ1ϕ2

)

and assume that A(L) is diagonal. This simplifies to a system of two unrelated equations

Ety1t+1 − (ρ1 + ρ2)y1t + ρ1ρ2y1t−1 = x1t

Ety2t+1 − (ϕ1 + ϕ2)y2t + ϕ1ϕ2y2t−1 = x2t

each of which can be solved individually without reference to the other. These equations are

identical to (8) described in the univariate section and the solution procedures outlined there will

hold. Therefore we can write

y1t =
LA11(L) + C0(1, 1)

(1− ρ1L)(1 − ρ2L)
ε1t, y2t =

LA22(L) + C0(2, 2)

(1− ϕ1L)(1− ϕ2L)
ε2t (22)

Suppose |ρ1|, |ρ2| < 1 and |ϕ1|, |ϕ2| > 1 so that there are two roots inside the unit circle and two

outside. We have n = 1,m = 1, p = 4, q = 2, r = 1, and according to Whiteman’s theorem, we have

a unique rational expectations solution. However, it is clear from (22) and the results of Section

2.2 that y1t has an infinite number of solutions and y2t has no solution. Therefore, Whiteman’s

multivariate theorem is incorrect and inconsistent with the univariate treatment. The reason is

that there is no way to set C0(1, 1) to cancel the extra root inside the unit circle in y2t due to the

decoupled nature of the system. This criterion also shares the same setback as the “root-counting”

criterion of Blanchard and Kahn (1980) that, as pointed out by Sims (2007), will break down in

situations where the unstable eigenvalues (i.e., roots inside the unit circle by Theorem 1) occur in

a part of the system that is decoupled from other expectational equations.15

Translating this example into our notation gives Γ−1 = F1,Γ0 = F0,Γ1 = G1 and Ψ0 = I, and

the z-transform of (15) becomes (Γ−1+zΓ0+z
2Γ1)C(z) = zA(z)+Γ−1C0. The Smith decomposition

14We are indebted to an anonymous referee for this suggestion.
15The root-counting criterion states that the solution exists and is unique when the number of unstable eigenvalues

matches the number of forward-looking variables, which is clearly satisfied here.
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of zΓ(z) gives

S(z) =

(

1 0

0 (1− ϕ1z)(1 − ϕ2z)

)

, T (z) =

(

(1− ρ1z)(1 − ρ2z) 0

0 1

)

where the roots inside the unit circle in S(z) place restrictions on the unknown coefficients C0:

(

0 1
)

(zA(z) + Γ−1C0)|z=1/ϕ1,1/ϕ2
= 0

Stacking the above restrictions yields

−
(

0 1

0 1

)

︸ ︷︷ ︸

R

C0 =




0 1

ϕ1
A11

(
1
ϕ1

)

0 1
ϕ2
A22

(
1
ϕ2

)





︸ ︷︷ ︸

A

Existence of solution requires that span(A) ⊂ span(R), which is violated here and hence our solution

algorithm would return “no existence.”

The solution method derived in this section is intimately related to many other approaches

proposed in the literature. In particular, the following proposition makes the connection to that

of Sims (2002) with a slight simplification of (12) that is more in line with the models analyzed

therein.

Proposition 1. Consider the multivariate linear rational expectations model16

(Γ−1L
−1 + Γ0)yt = Ψ−1L

−1xt + Γ−1ηt+1 (23)

Assume that Γ−1 is of full rank, and both the eigenvalues of −Γ−1
−1Γ0 and the roots of det[Γ−1+zΓ0] =

0 are nonzero and distinct. Then

1. Factorization equivalence: the eigenvalues of −Γ−1
−1Γ0 are exactly the inverses of the corre-

sponding roots of det[Γ−1 + zΓ0] = 0;

2. Existence equivalence: the restrictions imposed by the unstable eigenvalues in Sims (2002) are

exactly those imposed by the roots inside the unit circle in this paper.

3. Uniqueness equivalence: the conditions under which the solution to (23) is unique are equiv-

alent between Sims (2002) and this paper.

The proofs of 2. and 3. are relegated to the appendix but we demonstrate the connection

between the eigenvalues of −Γ−1
−1Γ0 and the roots of det[Γ−1 + zΓ0] = 0 [see Hamilton (1994) for

additional treatment]. First, the eigenvalue λ of −Γ−1
−1Γ0 can be computed as |Γ−1

−1Γ0 + λI| = 0.

16Since all variables are taken to be zero-mean linearly regular covariance stationary stochastic processes in this
paper, the vector of constants in Sims (2002) drops off from (23).
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Since Γ−1 is assumed to be of full rank and z 6= 0, we have |Γ−1 + zΓ0| = |zΓ−1||Γ−1
−1Γ0 +

1
z I| = 0,

or |Γ−1
−1Γ0 +

1
z I| = 0. This establishes λ = 1

z . Second, let Γ−1 + zΓ0 = U(z)−1P (z)V (z)−1 where

U(z) and V (z) are unimodular matrices and P (z) is the Smith canonical form for Γ−1+ zΓ0. Since

|U(z)| and |V (z)| are nonzero constants, the roots of |Γ−1+zΓ0| = 0 are exactly those of |P (z)| = 0.

Therefore, the zeros of our analytic function are identical to the eigenvalues of the −Γ−1
−1Γ0 matrix.

4 Motivating Examples

We provide two examples that demonstrate the usefulness of solving linear rational expectations

models in the frequency-domain. One is taken from the literature and therefore not rigorous, and

the other is new in this paper.

4.1 Incomplete Information One of the more compelling reasons to solve models using the

approach laid out above is the ease with which it handles incomplete information. The following

example is a slightly modified version of Kasa, Walker, and Whiteman (2008) (KWW, henceforth).

Consider the following standard asset pricing equation

pt = β

∫ 1

0
Eitpt+1di+ ft − ut (24)

where time is discreet and indexed by t = 0, 1, 2, ...; there is a continuum of investors on the unit

interval indexed by i, pt represents the price of an asset (e.g., an equity price or an exchange rate),

ft represents a commonly observed fundamental (e.g., dividends), and ut represents the influence

of unobserved fundamentals (e.g., noise or liquidity traders). Observed fundamentals are driven by

the exogenous process:

ft = a1(L)ε1t + a2(L)ε2t (25)

where a1(L) and a2(L) are square-summable polynomials in the lag operator L. The innovations,

ε1t and ε2t, are zero mean, unit variance Gaussian random variables, and are assumed to be

uncorrelated both contemporaneously and across time.

KWW assume two trader types—Type 1 and Type 2. Each period both traders observe pt

and ft. However, in addition, Type 1 traders observe the realizations of ε1t, while Type 2 traders

observe the realizations of ε2t.

The primary difficulty in solving dynamic rational expectation models with incomplete informa-

tion is deriving the information set of each trader type. The information sets evolve endogenously,

especially when agents form higher-order expectations (beliefs about other agents’ beliefs). KWW

show how the information structure of each agent can be backed out rather easily through the

use of the methodology advocated here. Specifically, assume that the equilibrium is given by

pt = π1(L)ε1t+π2(L)ε2t+π3(L)ε3t, then for Type 1 traders, the mapping between observables and

17
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the underlying shocks takes the following form,







ε1t

ft

pt






=







1 0 0

a1(L) a2(L) 0

π1(L) π2(L) π3(L)













ε1t

ε2t

vt







x1t =M1(L)ǫ1t (26)

where the πi(L) polynomials are equilibrium pricing functions. Each trader knows these functions

when forecasting next period’s price. Of course, these pricing functions depend on the forecasts via

the equilibrium condition (24), which yields a fixed point problem.

KWW show that the invertibility of M1(L) (or the lack thereof) determines the extent to which

the endogenous variable (the price of the asset) reveals the underlying shocks ǫ1t. The amounts to

ensuring tenet [iii.] holds in equilibrium; that is, the equilibrium must lie in the space spanned by

the fundamental shocks, which are not necessarily ǫ1t. KWW derive conditions in which (26) is

not invertible for equilibrium values of pt. This involves finding the fundamental representation of

(26), and then following the solution procedure outlined above.17

KWW (and many others Futia (1981), Taub (1989), Kasa (2000), Walker (2007), Rondina

(2009), Makarov and Rytchkov (2012), Bernhardt, Seiler, and Taub (2010) and Rondina and Walker

(2012), Huo and Takayama (2015)) advocate for z-transform techniques in solving dynamic models

with incomplete information. Time domain methods can be kludge due to the need to specify

a priori state variables and specific functional forms. For example, using the method advocated

here, (26) is a perfectly reasonable guess for the equilibrium. One would take expectations of (26)

using the Wiener-Kolmogorov expectation formula, plug this into the equilibrium equation (24)

and assess existence and uniqueness. Using time domain methodology, one would have to specify

a specific functional form for π(·) (e.g., ARMA(1,1)) before solving for the rational expectations

equilibrium. This additional step can be quite burdensome and also lead to incorrect inference (see

Kasa (2000), Walker (2007)).

4.2 Observational Equivalence Our second application applies our solution method to solve

a cashless version of the model in Leeper (1991), and shows that the two parameter regions of

determinacy in this model can generate observationally equivalent equilibrium time series driven by

carefully chosen exogenous driving processes. The model’s essential elements include: an infinitely

lived representative household endowed each period with a constant quantity of nondurable goods,

y; government-issued nominal one-period bonds so that the price level P can be defined as the

rate at which bonds exchange for goods; monetary authority follows nominal interest rate (R) rule

whereas fiscal authority follows lump-sum taxation (τ) rule.

The household chooses a sequence of consumption and bonds, {ct, Bt}, to maximize

17We direct readers to KWW for details on how to find the fundamental representation of (26) when M1(L) is
non-invertible.
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E0
∑∞

t=0 β
tu(ct) where 0 < β < 1 is the discount factor, subject to the budget constraint

ct +
Bt

Pt
+ τt = y + Rt−1Bt−1

Pt
taking prices and the initial principal and interest payments on debt,

R−1B−1 > 0, as given. Government spending is zero each period, so the government chooses a se-

quence of taxes and debt to satisfy its flow budget constraint Bt

Pt
+τt =

Rt−1Bt−1

Pt
given R−1B−1 > 0.

After imposing the goods market clearing condition, ct = y for t ≥ 0, the household’s consumption-

Euler equation reduces to the simple Fisher relation 1
Rt

= βEt
Pt

Pt+1
.

For analytical convenience, we close the model by specifying the following monetary and fiscal

policy rules

Rt = R∗(πt/π
∗)αeθt , θt

iid∼ N(0, σ2M )

τt = τ∗(bt−1/b
∗)γeψt , ψt

iid∼ N(0, σ2F )

where πt ≡ Pt/Pt−1, bt ≡ Bt/Pt, and ∗ denotes the steady state value for the corresponding variable.

Log-linearizing the above equations around the steady states, the system can be reduced to a

bivariate system in (π̂t, b̂t) where x̂t denotes the deviation of lnxt from lnx∗:

Etπ̂t+1 = απ̂t + θt

b̂t + β−1π̂t = [β−1 − γ(β−1 − 1)]b̂t−1 + αβ−1π̂t−1 − (β−1 − 1)ψt + β−1θt−1

for t = 0, 1, 2, . . .. Putting these equations into the form of (15) gives










(

1 0

0 0

)

︸ ︷︷ ︸

Γ−1

L−1 +

(

−α 0
1
β 1

)

︸ ︷︷ ︸

Γ0

L0 +




0 0

−α
β −

[
1
β − γ( 1β − 1)

]





︸ ︷︷ ︸

Γ1

L










(

π̂t

b̂t

)

︸ ︷︷ ︸

yt

=









(

1 0

0 −( 1β − 1)

)

︸ ︷︷ ︸

Ψ0

L0 +

(

0 0
1
β 0

)

︸ ︷︷ ︸

Ψ1

L









(

θt

ψt

)

︸ ︷︷ ︸

xt

+

(

1 0

0 0

)

︸ ︷︷ ︸

Γ−1

(

ηπt+1

ηbt+1

)

︸ ︷︷ ︸

ηt+1

where n = m = l = 1, p = q = 2, and A(L) is taken to be a (2× 2) identity matrix. Following the

solution procedure outlined in Section 3.2, we compute the Smith decomposition of zΓ(z) as

zΓ(z) = U(z)−1





1 0

0 z
(
z − 1

α

)
(

z − 1
1
β
−γ( 1

β
−1)

)



V (z)−1

Evidently, det[zΓ(z)] has three distinct roots, i.e. z1 = 0, z2 = 1
α , and z3 = 1

1
β
−γ( 1

β
−1)

. A unique

bounded equilibrium can exist if either |α| > 1 and |γ| > 1, or |α| < 1 and |γ| < 1. This implies
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that the policy parameter space is divided into four disjoint regions according to whether monetary

and fiscal policies are, in Leeper (1991) terminology, “active” or “passive”.

Case 1: α < 1 and γ > 1. Then we have one root inside the unit circle, i.e. z1 = 0, with the

other two outside, i.e. z2 =
1
α > 1 and z3 =

1
1
β
−γ( 1

β
−1)

> 1. Therefore, zΓ(z) can be decomposed as

the product of

S(z) = U(z)−1

(

1 0

0 z

)

, T (z) =





1 0

0
(
z − 1

α

)
(

z − 1
1
β
−γ( 1

β
−1)

)



V (z)−1

Solving for the R and A matrices gives

R = U2·(z1)Γ−1 =
(

0 0
)

and Q =

(

U2·(z
−1
2 )Γ−1

U2·(z
−1
3 )Γ−1

)

=

(
α(α+1−γ+βγ)−(1+β)

1−γ+βγ 0
(α+1−γ+βγ)(1−γ+βγ)−β(1+β)

αβ2 0

)

Since span(Q′) 6⊂ span(R′), any candidate of C0 that satisfies the existence condition may lead to

a different solution for yt and hence there are infinite solutions.

Case 2: α > 1 and γ > 1. Then we have two roots inside the unit circle, i.e. z1 = 0 and

z2 = 1
α < 1, with the other outside, z3 = 1

1
β
−γ( 1

β
−1)

> 1. Therefore, zΓ(z) can be decomposed as

the product of

S(z) = U(z)−1

(

1 0

0 z
(
z − 1

α

)

)

, T (z) =




1 0

0 z − 1
1
β
−γ( 1

β
−1)



V (z)−1

where the roots inside the unit circle in S(z) place restrictions on the unknown coefficients C0
18

U2·(z)[zΨ(z) + Γ−1C0]|z=1/α = 0

Notice that

R =

(

U2·(z1)Γ−1

U2·(z2)Γ−1

)

=

(

0 0
1−γ+βγ−αβ
α3(1−γ+βγ)

0

)

and Q = U2·(z
−1
3 )Γ−1 =

(
(α+1−γ+βγ)(1−γ+βγ)−β(1+β)

αβ2 0
)

Since span(Q′) ⊂ span(R′) holds, any candidate of C0 that satisfies the existence condition will

lead to the same solution for yt and hence the solution is unique. Finally, the z-transform of the

coefficient matrices for yt is given by

C(z) = (zΓ(z))−1[zΨ(z) + Γ−1C0] =






− 1
α 0

− 1
α

1−γ+βγ
1

z− 1
1
β
−γ( 1

β
−1)

1−β
1−γ+βγ

1
z− 1

1
β
−γ( 1

β
−1)






18Here we omit the restriction imposed by z = 0 because it is unrestrictive.

20



tan & walker: solving generalized multivariate linear re models

implying that

(

π̂t

b̂t

)

= C(L)

(

θt

ψt

)

=

(

− 1
α 0
1
αβ 1− 1

β

)

︸ ︷︷ ︸

C0

(

θt

ψt

)

+

∞∑

k=1

(

0 0
ρk

αβ (1− 1
β )ρ

k

)

︸ ︷︷ ︸

Ck

(

θt−k

ψt−k

)

where ρ = 1
β − γ( 1β − 1) < 1 and C0 not only satisfies the existence condition but is consistent as

well. Also, observe that fiscal shock and its lags do not enter the solution for π̂t. This consequence is

consistent with Sims (2002) because we have one unstable eigenvalue (α > 1) in the Fisher relation

containing expectational terms, which allows it to evolve separately from the government budget

constraint and hence π̂t is not affected by the fiscal shocks.

Case 3: α < 1 and γ < 1. Then we have two roots inside the unit circle, i.e. z1 = 0 and

z3 = 1
1
β
−γ( 1

β
−1)

< 1, with the other outside, z2 = 1
α > 1. Therefore, zΓ(z) can be decomposed as

the product of

S(z) = U(z)−1





1 0

0 z

(

z − 1
1
β
−γ( 1

β
−1)

)



 , T (z) =

(

1 0

0 z − 1
α

)

V (z)−1

where the roots inside the unit circle in S(z) place restrictions on the unknown coefficients C0

U2·(z)[zΨ(z) + Γ−1C0]|z= 1
1
β
−γ( 1

β
−1)

= 0

Notice that

R =

(

U2·(z1)Γ−1

U2·(z3)Γ−1

)

=

(

0 0

−β(1−γ+βγ−αβ)
α(1−γ+βγ)3 0

)

and Q = U2·(z
−1
2 )Γ−1 =

(
α(α+1−γ+βγ)−(1+β)

1−γ+βγ 0
)

Since span(Q′) ⊂ span(R′) holds, any candidate of C0 that satisfies the existence condition will

lead to the same solution for yt and hence the solution is unique. Finally, the z-transform of the

coefficient matrices for yt is given by

C(z) = (zΓ(z))−1[zΨ(z) + Γ−1C0] =




− 1
α

z
z− 1

α

1−β
α

1
z− 1

α

0 0





implying that

(

π̂t

b̂t

)

= C(L)

(

θt

ψt

)

=

(

0 β − 1

0 0

)

︸ ︷︷ ︸

C0

(

θt

ψt

)

+

∞∑

k=1

(

αk−1 (β − 1)αk

0 0

)

︸ ︷︷ ︸

Ck

(

θt−k

ψt−k

)

where C0 not only satisfies the existence condition but is consistent as well. In contrast to the
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previous case, fiscal shock and its lags now enter the solution for π̂t. This consequence is also

consistent with Sims (2002) because the only unstable eigenvalue ( 1β − γ( 1β − 1) > 1) stays in

the government budget constraint containing no expectational term. Determinacy of solution thus

requires that such unstable eigenvalue be imported into the Fisher relation which entails bringing

the fiscal shocks in the solution for π̂t.

Case 4: α > 1 and γ < 1. Then all roots are inside the unit circle. Therefore, zΓ(z) can be

decomposed as the product of

S(z) = U(z)−1





1 0

0 z
(
z − 1

α

)
(

z − 1
1
β
−γ( 1

β
−1)

)



 , T (z) = V (z)−1

where the roots inside the unit circle in S(z) place restrictions on the unknown coefficients C0

U2·(z)[zΨ(z) + Γ−1C0]|z= 1
α
, 1
1
β
−γ( 1

β
−1)

= 0

This gives the following system

−
(

1−γ+βγ−αβ
α3(1−γ+βγ)

0

−β(1−γ+βγ−αβ)
α(1−γ+βγ)3

0

)

︸ ︷︷ ︸

R

C0 =

(
1−γ+βγ−αβ
α4(1−γ+βγ)

0

0 −β(1−β)(1−γ+βγ−αβ)
α(1−γ+βγ)3

)

︸ ︷︷ ︸

A

Since span(A) 6⊂ span(R), the solution does not exist.

Given the distinct equilibrium dynamics in the above example, it seems straightforward to dis-

tinguish an equilibrium time series generated by active monetary/passive fiscal policies (Case 2)

from that generated by passive monetary/active fiscal policies (Case 3). Unfortunately, subtle ob-

servational equivalence results can make it difficult to identify whether a policy regime is active or

passive. The solution methodology developed in this paper makes it possible to study such obser-

vational equivalence phenomenon and the implied identification challenge that potentially resides

in many well-known DSGE models. In what follows, we highlight the point that simple monetary

models show that two disjoint determinacy regions can generate observationally equivalent equilib-

rium time series driven by generic exogenous driving processes. This suggests that existing efforts

to identify policy regimes may have been accomplished by imposing ad hoc identifying restrictions

on the exogenous driving processes.

For simplicity, we assume that the Wold representations for the exogenous driving processes in

Cases 2 and 3 are given by

(

θt

ψt

)

=

(

A11(L) 0

0 A22(L)

)

︸ ︷︷ ︸

A(L)

(

ε1t

ε2t

)

,

(

θt

ψt

)

=

(

B11(L) 0

0 B22(L)

)

︸ ︷︷ ︸

B(L)

(

ε1t

ε2t

)
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where the functional forms for {A11(·), A22(·), B11(·), B22(·)} are left unspecified.19 We proceed by

resolving the model for both cases. See Appendix A for derivation details.

Case 2: let α = α1 > 1 and γ = γ1 > 1. Then we have two roots inside the unit circle, i.e. 0

and zM1 = 1
α1
< 1, with the other outside, zM2 = 1

1
β
−γ1(

1
β
−1)

> 1. The z-transform of the coefficient

matrices for yt is given by

C1(z) =




−zM1

zA11(z)−zM1 A11(zM1 )

z−zM1
0

− 1
β
zM1 zM2 A11(zM1 )

z−zM2
( 1β − 1)zM2

A22(z)

z−zM2





which gives the solution under active monetary/passive fiscal regime.

Case 3: let α = α2 < 1 and γ = γ2 < 1. Then we have two roots inside the unit circle, i.e. 0

and zF2 = 1
1
β
−γ2(

1
β
−1)

< 1, with the other outside, zF1 = 1
α2
> 1. The z-transform of the coefficient

matrices for yt is given by

C2(z) =




−zF1

zB11(z)

z−zF1
(1− β)

zF1 B22(zF2 )

z−zF1

0 ( 1β − 1)zF2
B22(z)−B22(zF2 )

z−zF2





which gives the solution under passive monetary/active fiscal regime.

Equating the polynomial matrices C1(z) and C2(z) element by element delivers the following

system of restrictions on the exogenous driving processes in both cases

zA11(z)− zM1 A11(z
M
1 )

z − zM1
= µ

zB11(z)

z − zF1

A11(z
M
1 ) = 0

B22(z
F
2 ) = 0

A22(z)

z − zM2
= ν

B22(z)−B22(z
F
2 )

z − zF2

where µ =
zF1
zM1

and ν =
zF2
zM2

. This system seems overly restrictive but the fact

that there are sequences of infinite undetermined coefficients in the polynomial functions

{A11(z), A22(z), B11(z), B22(z)} buys one enough freedom of matching the terms. We have es-

tablished the following theorem

Theorem 6. Let {A11(z), A22(z), B11(z), B22(z)} be given by

A11(z) = a0 + a1z, A22(z) = c0 + c1z (27)

B11(z) = b0 + b1z, B22(z) = d0 + d1z (28)

Then there exist an infinite sequence of solutions satisfying the above system of restrictions, one of

19Obviously, this modified model is not readily solvable by conventional approaches.
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which is given by20

a0 = 1, a1 = − 1

zM1
, c0 = 1, c1 = − 1

zM2
(29)

b0 = 1, b1 = − 1

zF1
, d0 = 1, d1 = − 1

zF2
(30)

Its proof is trivial and thus omitted. This simple monetary model shows that two disjoint deter-

minacy regions can generate observationally equivalent equilibrium time series driven by properly

chosen exogenous driving processes. However, further study is needed to examine whether such

conclusion extends to more complicated DSGE models that researchers and policy institutions

employ to study monetary and fiscal policy interactions.

5 Concluding Comments

There are many other solution methodology papers in the literature that, like this one, expand

the range of models beyond that of Blanchard and Kahn (1980) [Anderson and Moore (1985),

Broze, Gouriroux, and Szafarz (1995), Klein (2000), Binder and Pesaran (1997), King and Wat-

son (1998), McCallum (1998), Zadrozny (1998), Uhlig (1999), and Onatski (2006)]. There are

compelling reasons for studying models with arbitrary number of lags of endogenous variables, or

lagged expectations, or with expectations of more distant future values, and with generic exogenous

driving processes that may be interesting to economists. From a purely methodological perspective,

analyzing more general models gives new insights into methods developed under more restrictive

assumptions and allows their deeper interpretation. Moreover, as we argue here, new (or old)

techniques could prove useful for solving complicated linear rational expectation models.

We show that the advantage of this frequency-domain approach over other popular time-domain

approaches derives from its provision of new insights into solving several well-known challenging

problems, e.g. dynamic models with incomplete information and observational equivalence between

equilibria. Therefore, the frequency domain solution methodology adds a new and (we argue)

fruitful dimension to those listed above.

Two useful extensions of our solution methodology would be to accommodate continuous-time

processes as in Sims (2002) and to extend our method to nonlinear solutions. Explicit extensions to

continuous-time and nonlinear systems enables one to tackle problems that can hardly be dealt with

in the discrete-time systems, linear setting.A continuous-time extension makes it possible to study

various non-stationary or near non-stationary features commonly present in almost all important

macroeconomic time series data. These non-stationarities usually cannot be fully removed by simple

detrending or transformations and very often, these detrending efforts may incur loss of important

long-term information about the data that is potentially valuable to researchers. Most dynamic

models do not have a natural linear structure. Extending our methodology to nonlinear frameworks

20Under the specification given in Theorem 6, we have one free coefficient and hence there are infinite solutions.
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would have obvious payoffs. One approach would be to use a Volterra expansion as opposed to the

Wold representation. We leave this for future research.
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Online Appendix

Appendix A: Derivations and Proofs Next, we prove Proposition 1 regarding the equivalence

relation of solution methodologies between Sims (2002) and this paper.

Proof of (1): first, the eigenvalue λ of −Γ−1
−1Γ0 can be computed as |Γ−1

−1Γ0 + λI| = 0. Also,

since Γ−1 is assumed to be of full rank and z 6= 0, we have |Γ−1 + zΓ0| = |zΓ−1||Γ−1
−1Γ0 +

1
z I| = 0,

or |Γ−1
−1Γ0 +

1
z I| = 0. This establishes λ = 1

z .

Second, let Γ−1+ zΓ0 = U(z)−1P (z)V (z)−1 where U(z) and V (z) are unimodular matrices and

P (z) is the Smith canonical form for Γ−1+ zΓ0. Since |U(z)| and |V (z)| are nonzero constants, the

roots of |Γ−1 + zΓ0| = 0 are exactly those of |P (z)| = 0.

Proof of (2): first, we derive the restriction system in Sims (2002). Since all eigenvalues of

−Γ−1
−1Γ0 are distinct, we know that −Γ−1

−1Γ0 is diagonalizable and can be factorized as

−Γ−1
−1Γ0 = PΛP−1

where P is the matrix of right-eigenvectors, P−1 is the matrix of left-eigenvectors, and Λ is a

diagonal matrix with all eigenvalues of −Γ−1
−1Γ0 on its main diagonal. Stability conditions then

require that for all t

PU ·(Γ−1
−1Ψ−1xt+1 + ηt+1) = 0 (A.1)

where PU · collects all the rows of P−1 corresponding to unstable eigenvalues.

Second, we derive the restriction system in this paper. Note that the polynomial matrix Γ−1 +

zΓ0 can be factorized as

Γ−1 + zΓ0 = U(z)−1P (z)V (z)−1 = U(z)−1P1(z)
︸ ︷︷ ︸

S(z)

P2(z)V (z)−1

︸ ︷︷ ︸

T (z)

where U(z) and V (z) are unimodular matrices and S(z) is the Smith canonical form for Γ−1+ zΓ0.

Also, S(z) is a polynomial matrix such that all the roots of det[S(z)] lie inside the unit circle while

T (z) is a polynomial matrix with all the roots of det[T (z)] outside the unit circle. Since all the

roots of det[Γ−1 + zΓ0] are distinct, the property that the (i, i) entry of Smith canonical form is

divisible by its (i− 1, i − 1) entry for i = 2, . . . , p implies that P1(z) is of the form

P1(z) =












1

1
. . .

1
∏r
j=1(z − zj)
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and hence

S(z)−1 =










U1·(z)
...

Up−1·(z)
1∏r

j=1(z−zj)
Up·(z)










This implies the following restriction system







Up·(z1)
...

Up·(zr)







Γ−1(Γ
−1
−1Ψ−1 + C0) = 0 (A.2)

Observe that for ∀zj with j = 1, 2, . . . , r, we have the following equation

U(zj)Γ−1

(

Γ−1
−1Γ0 +

1

zj
I

)

=
1

zj
P (zj)V (zj)

−1

where the last row is given by

Up·(zj)Γ−1

(

Γ−1
−1Γ0 +

1

zj
I

)

= (0 · · · 0)

This implies that Up·(zj)Γ−1 is exactly the left eigenvector corresponding to the unstable eigenvalue
1
zj

of −Γ−1
−1Γ0. Stacking Up·(zj)Γ−1 = P j· for j = 1, 2, . . . , r then gives







Up·(z1)
...

Up·(zr)







Γ−1 = PU ·

This implies that (A.2) is equivalent to

PU ·(Γ−1
−1Ψ−1 + C0) = 0 (A.3)

The proof is completed by noticing that both (A.1) and (A.3) hold if and only if the columns

of PU · span the space spanned by the columns of PU ·Γ−1
−1Ψ−1, i.e.

span(PU ·Γ−1
−1Ψ−1) ⊂ span(PU ·)

Proof of (3): first, the uniqueness condition in Sims (2002) requires that the knowledge of

PU ·η can be used to determine PS·η, where PS· is made up of all the rows of P−1 corresponding

to stable eigenvalues.
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Second, the uniqueness condition in this paper requires that the knowledge of







Up·(z1)
...

Up·(zr)







Γ−1C0

can be used to determine







Up·(z
−1
1 )

...

Up·(z
−1
r )







Γ−1C0

where zj for j = 1, . . . , r are those roots outside unit circle for det[Γ−1 + zΓ0] = 0, and hence

their inverses are exactly the stable eigenvalues of −Γ−1
−1Γ0 by part (1). Therefore, by part (2) the

solution is unique when the knowledge of PU ·C0 can be used to determine PS·C0.

The proof is completed by noticing that the uniqueness conditions in Sims (2002) and this paper

both hold if and only if the columns of (PU ·)′ span the space spanned by the columns of (PS·)′, i.e.

span((PS·)′) ⊂ span((PU ·)′)

Lastly, we resolve the simple monetary model in Section 4.2 but with generic exogenous driving

processes in both regimes. First, let α = α1 > 1 and γ = γ1 > 1. Then we have two roots inside

the unit circle, i.e. 0 and zM1 = 1
α1

< 1, with the other outside, zM2 = 1
1
β
−γ1(

1
β
−1)

> 1. Therefore,

zΓ(z) can be decomposed as the product of

S(z) = U(z)−1

(

1 0

0 z
(
z − zM1

)

)

, T (z) =

(

1 0

0 z − zM2

)

V (z)−1

where the roots inside the unit circle in S(z) place restrictions on the unknown coefficients C0

U2·(z)[zΨ(z)A(z) + Γ−1C0]|z=zM1 = 0

This gives the following system

−
(
1−γ1+βγ1−α1β
α3
1(1−γ1+βγ2)

0
)

C0 =
(
1−γ1+βγ1−α1β
α4
1(1−γ1+βγ1)

A11(z
M
1 ) 0

)

and hence C0(1, 1) = −zM1 A11(z
M
1 ) and C0(1, 2) = 0. Finally, the z-transform of the coefficient

matrices for yt is given by

C1(z) =




−zM1

zA11(z)−zM1 A11(zM1 )

z−zM1
0

− 1
β
zM1 zM2 A11(zM1 )

z−zM2
( 1β − 1)zM2

A22(z)

z−zM2
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which gives the solution under active monetary/passive fiscal regime.

Second, let α = α2 < 1 and γ = γ2 < 1. Then we have two roots inside the unit circle, i.e. 0 and

zF2 = 1
1
β
−γ2(

1
β
−1)

< 1, with the other outside, zF1 = 1
α2
> 1. Therefore, zΓ(z) can be decomposed as

the product of

S(z) = U(z)−1

(

1 0

0 z
(
z − zF2

)

)

, T (z) =

(

1 0

0 z − zF1

)

V (z)−1

where the roots inside the unit circle in S(z) place restrictions on the unknown coefficients C0

U2·(z)[zΨ(z)B(z) + Γ−1C0]|z=zF2 = 0

This gives the following system

−
(

−β(1−γ+βγ−αβ)
α(1−γ+βγ)3

0
)

C0 =
(

0 −β(1−β)(1−γ+βγ−αβ)
α(1−γ+βγ)3

B22(z
F
2 )
)

and hence C0(1, 1) = 0 and C0(1, 2) = (β − 1)B22(z
F
2 ). Finally, the z-transform of the coefficient

matrices for yt is given by

C2(z) =




−zF1

zB11(z)

z−zF1
(1− β)

zF1 B22(zF2 )

z−zF1

0 ( 1β − 1)zF2
B22(z)−B22(zF2 )

z−zF2





which gives the solution under passive monetary/active fiscal regime.

Appendix B: User’s Guide All of the routines required to implement this solution algorithm

are written and compiled in MATLAB, which take the advantages of MATLAB Symbolic Toolbox

and are executed with the following files:21

• model.m file serves as a template for inputting all of the matrix coefficients of a generalized

multivariate linear rational expectations model of the form given by (12). It then calls the

function tranz(Gamma,Psi,A,n,T) in tranz.m;

• tranz.m file serves as the main script that performs the z-transform algorithm for a given

multivariate linear rational expectations model and computes its solution by invoking re-

lated functions in MATLAB Symbolic Toolbox. It also examines the model’s existence and

uniqueness conditions;

• multroot.m file finds all the distinct roots of a given polynomial with their corresponding

multiplicities;

• U.txt file defines a MAPLE procedure that computes the (left) unimodular matrix U(z) in

the Smith canonical decomposition of a given polynomial matrix.

21This program is available upon request.
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As an example, we use the model in Section 4.2 to outline how to implement the solution

algorithm. There are a number of model-specific initializations that are specified by the user and

break down into several easily implementable steps:

• Step 1 – define the symbolic variable z and the numerical values of the model’s parameters.

MATLAB code:

syms z % symbolic z

beta = 0.9804; % discount factor

alpha = 1.5; % active monetary

gamma = 1.2; % passive fiscal

• Step 2 – specify the indices for both endogenous and exogenous variables. MATLAB code:

npi = 1; % inflation

nb = 2; % real debt

ntheta = 1; % monetary shock

npsi = 2; % fiscal shock

• Step 3 – define the matrix coefficients and relevant parameters. MATLAB code:

p = 2; % system dimension

n = 1; % number of leads

m = 1; % number of endo lags

l = 1; % number of exo lags

Gamma = zeros(p,p,n+m+1); % endo matrix polynomial

Psi = zeros(p,p,n+l+1); % exo matrix polynomial

A = [1 0;0 1]; % driving matrix polynomial

• Step 4 – enter the equilibrium equations one by one. MATLAB code:

% (1) Fisher equation

Gamma(1,npi,1) = 1;

Gamma(1,npi,2) = -alpha;

Psi(1,ntheta,2) = 1;

% (2) Government budget constraint

Gamma(2,npi,2) = 1/beta;
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Gamma(2,nb,2) = 1;

Gamma(2,npi,3) = -alpha/beta;

Gamma(2,nb,3) = -(1/beta-gamma*(1/beta-1));

Psi(2,npsi,2) = -(1/beta-1);

Psi(2,ntheta,3) = 1/beta;

• Step 5 – construct the matrix polynomials and solve the model by calling the function

tranz(Gamma,Psi,A,n,T) in tranz.m. The program returns two elements, i.e. eu (exis-

tence and uniqueness) and sol (first T moving average matrix coefficients of the solution).

MATLAB code:

% construct matrix polynomials

Gamma = Gamma(:,:,1)/z+Gamma(:,:,2)+Gamma(:,:,3)*z;

Psi = Psi(:,:,1)/z+Psi(:,:,2)+Psi(:,:,3)*z;

% solve model

[eu,sol] = tranz(Gamma,Psi,A,n,T);
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