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Revisiting an Age-Old Question

Q:What Does Monetary Policy Do To Inflation?

• New Keynesian answer: Contractionary monetary shock ⇒ inflation ↓

1



Revisiting an Age-Old Question

Q:What Does Monetary Policy Do To Inflation?

• New Keynesian answer: Contractionary monetary shock ⇒ inflation ↓

1



Revisiting an Age-Old Question

Time series evidence - Two guises of the same issue?

• Price puzzle (Sims 1992): Standard VAR identification schemes can lead to

increases in inflation after a contractionary monetary shock. Partial solution:

Add more information/variables.

• Fed information effect: Increases in prices using high-frequency identification

due to information mismatch between private sector and Fed. (Campbell et al

2012, Nakamura & Steinsson 2018). Possible resolution: Information effect might

disappear after controlling for all available information (Bauer & Swanson 2023)
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What Are We Doing?

Argue that temporal aggregation bias explains adverse monetary transmission:

• Monte Carlo evidence

• no clean identification when time-aggregating

• (Semi-) analytical example

• information mismatch between econometrician and private agents

• Local projections with a daily CPI calculated by the Billion Prices Project (Cavallo

& Rigobon 2016) and the Nakamura-Steinsson high-frequency shocks

• adversely-signed when aggregated, conventionally-signed when not

• estimates affected by timing of the shocks

• State space model

• confirms conventionally-signed transmission
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What Are We Doing?

• Existing transmission literature refines monetary policy shocks (RHS)

• Miranda-Agrippino & Ricco (2021), Cieslak & Schrimpf (2019), Andrade & Ferroni

(2021), Bu et al. (2021), Hoesch et al. (2023), Sastry (2022), Karnaukh & Vokata

(2022), Caldara & Herbst (2019), Lunsford (2020), Lewis (2020), Bundick & Smith

(2020), Acosta (2023)

• We refine response variables (LHS)

• via a daily measure of inflation based on the Billion Price Project

• Temporal aggregation results are generic and will be a key feature of the nascent

field of high-frequency macro (Baumeister et al. 2021, Lewis et al. 2021, and

Buda et al. 2023)
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Temporal Aggregation with Local
Projections



Some Monte Carlo Evidence - Setup

The data-generating process

• DGP: πt = Θ(L) εmt︸︷︷︸
monetary policy shock

+ut

• ut = ρuut−1 + εut , ε
u
t ∼ N(0, 1),

ρu = 0.99

• εmt ∼ N(0, 1), one shock every 30 days

• Θ(L) =
∑59

i=0ΘiL
i
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Temporal Aggregation Bias Intuition

Aggregate from daily t to monthly T

• Timing of shock matters, no clean identification

ΠT =

29∑
t=0

πt
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Temporal Aggregation Bias Intuition

Aggregate from daily t to monthly T

• Timing of shock matters, no clean identification

• Monetary shock on day iT = 20
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Temporal Aggregation Bias Intuition

Aggregate from daily t to monthly T
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Temporal Aggregation Bias Intuition

Aggregate from daily t to monthly T

• Timing of shock matters, no clean identification

• Monetary shock on day iT = 0

ΠT =

29−0∑
t=0

(1t≤9 − 1t>9)︸ ︷︷ ︸
=−10

εm0 +

29∑
t=0

ut
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Days of the Month of FOMC Announcements
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Local Projections (Varying the ut process)

Some Monte Carlo Evidence - Three Population Regressions

• Take 30-day averages of inflation

• Aggregated data can show a positive response on impact despite the majority of

MA coefficients being negative

• Largest negative effect at the beginning, positive effect in the middle of the month

Shock at Beginning in Middle at End

ϵT ΠT−1 ϵT−1 ϵT ΠT−1 ϵT−1 ϵT ΠT−1 ϵT−1

ΠT -0.50 -1.16 0.38 -0.85 -0.06 -0.26

LP at T=0 -0.40 0.82 0.29 0.82 0.03 0.82

LP at T=1 -1.10 0.61 -0.92 0.60 -0.19 0.60
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A Simple Laboratory

Three Ingredients

1. Fisher equation: it = r + Et [πt+1|It ]

2. Monetary policy rule: it = r + ϕπt + xt

3. Autocorrelated monetary shock: xt = ρxt−1 + ϵt

Equilibrium Dynamics

πt = −
xt

ϕ− ρ
= ρπt−1 +

−ϵt

(ϕ− ρ)

From AR to ARMA

Temporally aggregating AR(1) inflation yields an ARMA(1,1) representation:

(1− ρmL)ΠT = uT + θuT−1, uT ∼ N(0, σ2
u), t = mT
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Temporally Aggregated Inflation

m = 1 m = 2 m = 5 m = 10 m = 20 m = 30 m = 40 m = 50

ρm 0.990 0.980 0.951 0.904 0.818 0.740 0.669 0.605

σ2
Π 1.397 1.389 1.374 1.351 1.307 1.266 1.226 1.186

θ 0.000 0.171 0.250 0.264 0.265 0.266 0.266 0.267

σ2
u 0.028 0.041 0.085 0.160 0.288 0.391 0.476 0.542

Table 1: Estimates of the ARMA(1,1) using temporally aggregated observations. We match

moments of the aggregated inflation series to the ARMA(1,1) process.

• ρm decays exponentially
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moments of the aggregated inflation series to the ARMA(1,1) process.

• ρm decays exponentially

• σ2
Π decays multiplicatively

• θ and σ2
u compensate resulting in a more pronounced initial impact
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Result 1: Temporal Aggregation can Exacerbate Initial Impulse Responses

The “true” IRF (m = 1) is mitigated relative to the temporally agg. responses
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Tackling Temporal Aggregation using
Daily Inflation Data



How Do We Measure Daily Inflation? (comparison of sources)

• Billion Prices Project (BPP): daily CPI for select countries

• 5 million online prices webscraped daily, 300 retailers in 50 countries

• U.S. index publicly available from 2008 to 2015 via Cavallo & Rigobon (2016)

• Pros: Higher frequency than both monthly official CPI or weekly scanner data

• 0.5 million prices daily compared to 80,000 per month

• Cons: Not as comprehensive as official CPI

• smaller subset of retailers and products than official CPI

• no services, relies on official weights

• Cavallo (2017): 70 percent of online prices identical to those obtained by

physically visiting stores

• BPP predicts the CPI, especially with mixed-frequencies

• Aparicio & Bertolotto (2020), Harchaoui & Janssen (2018)
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Official and Daily Inflation, Monthly and 30-day Percentage Change (seasonality)
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Predicting the Official CPI (nowcast) (table) (end of month) (levels) (other CPI)

2009 2011 2013 2015
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IRF of πt to a Nakamura & Steinsson (2018) Monetary Shock - LP-IV

(high-frequency shocks
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IRF of πt to a Nakamura & Steinsson (2018) Monetary Shock - LP-IV

(12 lags) (FOMC cycles) (Bu et al. 2021 IRFs) (high-frequency shocks
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Controlling for Timing



Why a State Space Model?

• Handles data observed at different frequencies, can control for both the irregular

intervals of monetary shocks and official inflation data releases

• Allows for measurement error

• Results: confirms conventionally-signed response of inflation to monetary shocks

• Johannsen & Mertens (2020) find adverse response at a quarterly frequency

18



Our Model

State Dynamics

1. Unobserved daily CPI inflation: πt = τt + gt + eπt

2. Permanent component: τt = τt−1 +
∑K

k=0 θ
τ
kmt−k + eτt

3. Transitory component: gt = ρgt−1 +
∑J

j=0 θjmt−j + egt

4. Monetary shock dynamics: mt = emt

All e shocks are iid Gaussian, K = J = 60

19
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Our Model

Observation Equations

1. Monthly observation of CPI (real-time vintages): πm
t = πt−p + emonthly

t , p is

publication lag (which can vary over time)

2. Daily measure of monthly (30-day) inflation: πdaily
t = αdaily + πt + edailyt

3. Monetary shock: mobs
t = mt + em,obs

t

4. 10-year break-even rates: πBE ,h
t = αBE + Etπt,t+h + eBEt

• Etπt+h = Et(τt+h + gt+h) = τt + ρhgt ≈ τt

All e shocks are iid Gaussian
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Impulse response of πt to a one standard deviation monetary policy shock
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Impulse response of τ and gt to a one standard deviation monetary policy shock

(less shrinkage) (Bu et al. 2021 shock) (variance decomposition)
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Conclusion

• Propose temporal aggregation bias as a new information-based explanation for the

adverse transmission of monetary shocks

• Conventionally-signed transmission at a high-frequency, but adverse when

aggregated

• Temporal aggregation bias is generic and will be key for high-frequency macro
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Appendix



Robust to Varying the ut Process
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Result 1: Temporal Aggregation can Exacerbate Initial Impulse Responses

Lower frequencies are preserved even though ρ > ρm, ↑ σ2
u and θ > 0 compensate
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Alternative Micro-Price Data Sources Cavallo (2015)

Online data Scanner data CPI data

Cost per observation Low Medium High

Data frequency Daily Weekly Monthly

All products in retailer (Census) Yes No* No

Uncensored price spells Yes Yes No

Countries with research data ∼ 60 < 10 ∼ 20

Comparable across countries Yes Limited Limited

Real-time availability Yes No No

Product categories covered Few Few Many

Retailers covered Few Few Many

Quantities or expenditure weights No Yes Yes
∗Some scanner data do offer data for all products
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Predicting the Official CPI

• Official: Monthly percentage change, month T

∆CPIT = 100× (logCPIT − logCPIT−1)

• BPP: Monthly average of the 30-day percentage change, day t of month T

∆BPPT =
1

T

∑T

t=1
100× (logBPPt − logBPPt−30)

• Nowcast using the aggregated daily CPI

log∆CPIT = β0 + β1 log∆BPPT

August Monthly Average

August 1, 2008 September 1, 2008 October 1, 2008

August CPI Release
September 16, 2008

• Day 17 is the mean release day 24



Predicting the Official CPI via Aggregated Daily CPI (end) (levels)

∆CPIT

(1) (2) (3) (4) (5)

∆CPIT−1 0.558∗∗∗ 0.178

(0.143) (0.107)

∆BPPT 0.937∗∗∗ 0.878∗∗∗ 0.828∗∗∗

(0.129) (0.097) (0.106)

∆BPPT−1 0.591∗∗ 0.109 −0.030

(0.248) (0.193) (0.222)

R2 0.32 0.58 0.23 0.59 0.61

Adj. R2 0.31 0.58 0.22 0.58 0.60

Standard errors in parentheses. ∗(p < .10), ∗∗(p < .05), ∗∗∗(p < .01)
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Predicting the Official CPI with the Monthly Average of the Daily Index, July
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Predicting the Official CPI with the End of Month Obs. of the 30-day Annualized

Percentage Change (monthly average)

-20

-10

0

10

2008 2010 2012 2014 2016

Official Index Prediction by Daily

CPI=.24+.66BPP
R^2=.39

-20

-10

0

10

-15 -10 -5 0 5 10
 

Data Fitted Values 24



Day of Week Effects?

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

96.7 96.8 96.9 97
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Month of Year Effects?

Jan.

Feb.

Mar.

Apr.

May

Jun.

Jul.

Aug.

Sep.

Oct.

Nov.

Dec.

96 96.5 97 97.5
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Construction of Nakamura & Steinsson (2018) Shocks

Change in five interest rates 10 min. before and 20 min. after the FOMC event

1. expected ffr (r0) for the month, adjusted for the days of the month already

elapsed (d0) out of total days of the month (m0) of the FOMC meeting.

For the current month:

f 1t−∆t︸ ︷︷ ︸
ffr future prior to

FOMC meeting

=
d0
m0

r−1︸ ︷︷ ︸
actual ffr prior to

FOMC meeting

+
m0 − d0

m0
Et−∆tr0︸ ︷︷ ︸

ffr future prior to

FOMC meeting

f 1t︸︷︷︸
ffr future

after FOMC meeting

=
d0
m0

r−1︸ ︷︷ ︸
actual ffr prior to

FOMC meeting

+
m0 − d0

m0
Etr0︸ ︷︷ ︸

ffr future
after FOMC meeting

Combining and re-arranging:

Etr0 − Et−∆tr0︸ ︷︷ ︸
expected change in ffr

=
m0

m0 − d0
(f 1t − f 1t−∆t)
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Construction of Nakamura & Steinsson (2018) Shocks

2. expected ffr r1 for the remainder of the month of the next FOMC meeting

Etr1 − Et−∆tr1︸ ︷︷ ︸
expected change in ffr

in month of next FOMC

=
m1

m1 − d1

[
(f nt − f nt−∆t)︸ ︷︷ ︸

change in ffr future

for next FOMC meeting

−
d1
m1

(Etr0 − Et−∆tr0)︸ ︷︷ ︸
scaled expected change

in current month

]

3. change in expected three-month eurodollar fut. two, three, & four quarters ahead

• Compute first principal component of the changes in the previously described five

interest rates

• Rescale the first principal component so that its effect on one-year nominal

Treasury yields is equal to one

• Note: when the FOMC event occurs with seven days or less remaining in the

month, the change in the price of next month’s fed funds futures contract f nt is

used instead to avoid unreasonably large scaling factors m0
m0−d0

or m1
m1−d−1 24



Construction of Bu et al. (2021) Shocks

Fama and MacBeth (1973) two-step procedure extracts unobserved monetary policy

shocks ∆ialignedt from the common component of zero-coupon yields ∆Rj ,t

1. estimate sensitivity of yields with maturity j = 1, ..., 30 via time-series regressions

∆Rj ,t = αj + βj∆it + ϵj ,t

assume ∆it is one-to-one with 2-year yield ∆R2,t for normalization and estimate

∆Rj ,t = θj + βj∆R2,t + ϵj ,t − βjϵ2,t︸ ︷︷ ︸
ξj,t

corr(∆Rj ,t , ξi ,t) due to βjϵ2,t reconciled w/ IV or Rigobon (2003) het. estimator

2. recover aligned monetary policy shock ∆ialignedt form cross-sectional regressions of

∆Rj ,t on the sensitivity index β̂j for each FOMC announcement t

∆Rj ,t = αj + ∆ialignedt β̂j + vj ,t , t = 1, ...,T

3. Re-scale to ∆R2,t . Note scaling variable used in both step 1 and step 3. 24



Predicting the Official CPI Categories via Aggregated Daily CPI

∆CPI iT , sub-categories i ∆PCET

(1) (2) (3) (4) (5) (6)

Headline Commodities
Commodities
& Shelter

Headline
ex energy

Headline
ex Medical

Headline
PCE

∆BPPT 0.937∗∗∗ 1.618∗∗∗ 0.530∗∗∗ 0.180∗∗∗ 1.001∗∗∗ 0.497∗∗∗

(0.129) (0.283) (0.121) (0.052) (0.137) (0.081)

R2 0.58 0.48 0.36 0.21 0.59 0.52

Adj. R2 0.58 0.47 0.36 0.20 0.58 0.52

Standard errors in parentheses. ∗(p < .10), ∗∗(p < .05), ∗∗∗(p < .01)
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Predicting the Official CPI Index, July 2008=100
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Predicting the Official CPI Index using the End of Month Obs. of the Annualized

30-day Percentage Change (monthly average)

∆CPIt

(1) (2) (3) (4) (5)

∆CPIt−1 0.547∗∗∗ 0.138

(0.136) (0.111)

∆BPPt 0.646∗∗∗ 0.497∗∗∗ 0.461∗∗∗

(0.121) (0.104) (0.111)

∆BPPt−1 0.609∗∗∗ 0.437∗∗∗ 0.360∗∗∗

(0.155) (0.115) (0.114)

(R2) 0.304 0.388 0.350 0.555 0.566

Standard errors in parentheses. ∗(p < .10), ∗∗(p < .05), ∗∗∗(p < .01)
24



Predicting the Official CPI (in Levels) with the Monthly Average of the Daily

Index

CPIt

(1) (2) (3) (4) (5)

CPIt−1 1.000∗∗∗ 0.803∗∗∗

(0.00895) (0.0460)

BPPt 0.879∗∗∗ 1.137∗∗∗ 0.696∗∗∗

(0.0138) (0.173) (0.0875)

BPPt−1 0.880∗∗∗ −0.257 −0.522∗∗∗

(0.0178) (0.170) (0.0842)

(R2) 0.994 0.985 0.975 0.986 0.997

Standard errors in parentheses. ∗(p < .10), ∗∗(p < .05), ∗∗∗(p < .01)
24



Measures of High Frequency Monetary Policy Shocks

• Nakamura & Steinsson (2018) details

• first principal component of the change in five short-term interest rate futures

• 30-minute window surrounding FOMC announcement

• Bu et al. (2021) details

• Fama and MacBeth (1973) regression on all maturities of bond yields

• one day window surrounding FOMC announcement
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Instruments
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Nakamura-Steinsson
Bu-Rogers-Wu

Figure 1: Nakamura & Steinsson (2018) and Bu et al. (2021) monetary policy shocks. The sample is

from July 2008 to January 2015 which is when the daily CPI index is publicly available.
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Impulse response of monthly aggregated πdaily
t to a Nakamura & Steinsson

(2018) monetary shock LP-IV, 12 lags

Monthly Inflation
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Impulse response of πdaily
t to a Bu et al. (2021) monetary shock - LP-IV (12 lags)

Daily Inflation, BRW
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Impulse response of monthly aggregated πdaily
t to a Bu et al. (2021) monetary

shock - LP-IV, 12 lags

Monthly Inflation, BRW
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Estimation

• Bayesian estimation (sequential Monte Carlo)

• Likelihood evaluation via Kalman filter

• State space model with time-varying matrices

• 2557 daily observations - July 2008 to July 2015

• 57 monetary policy shock observations

• Priors largely uninformative

• θj ∼ N(0, scaling j × 0.25), θτj ∼ N(0, scaling j × 0.25)

• scaling = 0.95 or scaling = 0.99
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Impulse response of τt to a one standard deviation monetary policy shock - less

shrinkage
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Impulse response of πt to a one standard deviation monetary policy shock - less

shrinkage
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Impulse response of gt to a one standard deviation monetary policy shock - less

shrinkage
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Impulse response of πt to a one standard deviation monetary policy shock,

Bu et al. (2021)
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Impulse response of gt to a one standard deviation monetary policy shock,

Bu et al. (2021)
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Impulse response of τt to a one standard deviation monetary policy shock,

Bu et al. (2021)
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Variance Decomposition
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Does inflation respond to FOMC announcements at a daily frequency?

• Line up all FOMC meetings at x-value 0 and take average of BPP inflation across

meetings

• Placebo I: x-value 0 instead equals the first of month, CPI release, etc.

• Placebo II: 45-day percentage change (≈ FOMC cycle), etc.

• Result: daily inflation rises then drops, on average, after an FOMC announcement

• Lewis et. al (2019): direct and immediate transmission of monetary policy to

daily measure of household confidence

24



Average Daily CPI, 30-day percentage change (median) (45-day %) (mean ex. GFC)
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Median Daily CPI, 30-day percentage change
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Average Daily CPI, 30-day percentage change
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Average Daily CPI, percentage change
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